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Abstract 
The ARINC 653 specification defines the 

functionality that an Operating System (OS) must 
guarantee to enforce robust spatial and temporal 
partitioning as well as an avionics application 
programming interface for the system. 

The standard application interface – the 
ARINC 653 Application Executive (APEX) – is 
defined as a set of software services a compliant OS 
must provide to avionics application developers. 
The ARINC 653 specification defines the interfaces 
and the behavior of the APEX but leaves 
implementation details to OS vendors. 

This paper describes an OS independent design 
approach of a Portable APEX interface. POSIX, as 
a programming interface available on a wide range 
of modern OS, will be used to implement the APEX 
layer. This way the standardization of the APEX is 
taken a step further: not only the definition of 
services is standardized but also its interface to the 
underlying OS. Therefore, the APEX operation 
does not depend on a particular OS but relies on a 
well defined set of standardized components. 

Introduction  
The ARINC 653 specification gives a clear 

definition of interfaces and behavior of the APEX. 
The implementation, on the other hand, is left to 
system suppliers. During the AMOBA project, 
developed by Skysoft Portugal and co-funded by 
the European Space Agency (ESA), the project 
team was confronted with the requirement of an 
APEX implementation that could be standardized as 
well. 

AMOBA is a multi-platform ARINC 653 
simulator. The main purpose of AMOBA is to 
provide to users an execution environment with the 

capability to execute and verify ARINC 653 
applications [1]. The AMOBA Simulator aims to 
provide a low cost, yet effective, environment to 
develop space applications and verify their 
behaviour without having access to the final target 
platform and without the need for a real ARINC 
653 Real-Time Operating System (RTOS). 

A fundamental design attribute of AMOBA 
concerns the portability of the simulator. A multi-
platform approach shall provide availability of the 
simulator on every POSIX-compliant operating 
system [2]. The AMOBA Simulator is intended to 
be executed on different platforms, so it must avoid 
dependency between APEX and the OS Kernel. 
This means that it shall not access directly the OS 
kernel specific interface unless it is strictly 
necessary. 

During the project, a layered architecture was 
adopted. By means of this layered architecture, 
direct calls from the APEX to the underlying OS 
were drastically reduced and entirely encapsulated 
in a POSIX-dependent sub-component providing 
fundamental services to the APEX. The AMOBA 
Project team exploited the logical independence 
between the APEX and the underlying OS to 
enforce portability and flexibility properties.  

This led to the advanced concept of the 
Portable APEX. The Portable APEX is currently 
further developed beyond the scope of the 
Simulator, to meet requirements of real ARINC 653 
RTOS. The main goal of the Portable APEX is now 
to host real avionics applications on real 
partitioning systems. 

The ARINC 653 Architecture 
ARINC 653 defines support for robust 

partitioning in on-board systems, such that one 



processing unit, usually called a module, is able to 
host one or more avionics applications and to 
execute them independently [3,4]. This can be 
correctly achieved if the underlying system, often 
called the Module Operating System (MOS), 
provides separation of the avionics applications, 
usually for fault containment, such that a failure in 
one partitioned function cannot cause a failure in 
another partitioned function; in consequence the 
partitioning approach eases verification, validation 
and certification [3,5]. The unit of partitioning is 
called a partition. In a given sense, a partition is 
equivalent to a program in a single application 
environment: it comprises data, code and its own 
context configuration attributes (see Figure 1). 

 
Figure 1: Space Partitioning 

Partitioning separates applications in two 
dimensions: space and time. Spatial separation 
means that the memory of a partition is protected. 
No application can access memory out of the scope 
of its own partition. Temporal separation means that 
only one application at a time has access to system 
resources, including the processor; therefore only 
one application is executing at one point in time – 
there is no competition for system resources 
between partitioned applications. 

ARINC 653 defines a static configuration 
where each partition is assigned a set of execution 
windows. The program in the partition associated 
with the current execution window gains access to 
the processor. When the execution window 
terminates, the program is preempted; when the 
next execution window starts, the program 
continues execution from the point it was 
previously preempted (see also Figure 2). 

 

 
Figure 2: Time Partitioning 

Processes within the scope of a partition are 
scheduled by a priority-based preemptive scheduler 
with first-in-first-out (FIFO) order for processes 
with the same priority. This second level scheduler 
is invoked whenever an execution window assigned 
to its partition starts and the partition gains access 
to the processor. The process scheduler is 
preempted by the first level partition scheduler 
when the execution window terminates. 

The services defined by ARINC 653 are 
partition and process management services, 
partition-internal inter-process communication and 
synchronization means, like events, message 
buffers, blackboards and semaphores; inter-partition 
services via queuing and sampling ports; time 
services; an interface to the health monitor; and 
interfaces to the partition associated with the 
application and the processes it consists of. 
Additionally, optional services are provided by part 
2 of the ARINC 653 specification, like file system 
services, shared memory blocks and naming 
services [6]. 

Portable APEX: Architectural 
Overview 

As illustrated in Figure 1, the application 
within a partition is supported by an OS with 
partition scope, the Partition Operating System 
(POS). The POS provides functionalities like 
process management and scheduling, as well as 
inter-process communication (IPC) support for 
applications, and also interacts with the module 
operating system on behalf of the hosted 
application.  

In commercial ARINC 653 compliant RTOS, 
like VxWorks 653 from Wind River or PikeOS by 
SysGo, the POS is usually an integrated part of the 



system [7,8,9]. But in principle, any kind of RTOS 
could be used to provide an API to the hosted 
avionics applications. In fact, the partitioning 
approach is often associated with virtualization 
concepts, where partitions are seen as virtual 
machines with their own para-virtualized operating 
system [8,9,10,18]. VxWorks 653 and PikeOS, for 
instance, use virtualization concepts to host general 
purpose operating systems based on Linux. 
Consequently, different operating systems can be 
used with different partitions forming different 
personalities [9] for applications that vary in 
requirements and APIs they rely on, like APEX or 
POSIX. 

In the context of the AIR-II project (ARINC 
Interface in RTOS – Industrial Initiative) Skysoft, 
University of Lisbon and Thales Alenia Space 
sponsored by ESA are defining an ARINC 653 
compliant RTOS that uses RTEMS as primary POS 
[11,12,13,14]. RTEMS (Real-Time Executive for 
Multiprocessor Systems) is an open source RTOS 
that provides three different APIs to application 
programmers: an RTEMS native API, a POSIX 
compliant API and an ITRON API [15,16]. But 
AIR is not limited to RTEMS. Other OS like eCos 
[17] or any embedded flavor of Linux or even 
general purpose Linux may be used as POS in the 
future, supporting this way a wide range of APIs 
and applications relying on them [18].  

 
Figure 3: The AIR Architecture 

Among the APIs available for AIR 
applications the most important is the ARINC 653 
APEX interface. The AIR-II consortium decided 
not to implement an entirely new POS to provide 
APEX services to hosted applications but to build 
the APEX interface on top of available RTOS (see 
Figure 3).  

The first approach was to target the RTEMS 
native API; the disadvantage of this solution is that, 
despite of having a wide range of RTOS available, 
only one would be able to host the APEX. 

Therefore, it was decided to adopt the AMOBA 
approach and to build the APEX interface using a 
standard API that is available on all relevant RTOS; 
this standard API is POSIX. With POSIX as 
baseline, the APEX inherits the main feature from 
this API: portability. Users of the AIR system can 
choose the POS that fits best their needs. 

But the Portable APEX is also independent of 
any system in the sense it may be integrated with 
any ARINC 653 MOS, that i) hosts a POSIX 
compliant POS and ii) supports the interface the 
APEX uses to request services like inter-partition 
communication or setting and getting partition-
related control variables. 

This way competition on the implementation 
of the standard is taken a step further. With this 
approach, competition is possible not only on the 
implementation of the standard as a whole, but even 
on the implementation of components of an ARINC 
653 system. The supplier of a given ARINC 653 
MOS, such as the AIR Partition Management 
Kernel (PMK), may have a role similar to an IMA 
system integrator concerning the potentially 
different POS that host avionics applications [5]. 

The Portable APEX adopts the layered 
architecture from AMOBA to additionally 
strengthen portability (see Figure 4). The Portable 
APEX is divided into two layers: an APEX layer, 
implementing the APEX services themselves, and a 
Core layer that provides fundamental services to the 
APEX layer. The main purpose of the Core layer is 
to hide POSIX-dependent implementation details. 
APEX processes, for instance, are not directly 
based on POSIX Threads but on a thread concept 
that is provided by the Core layer. The Core threads 
actually use POSIX Threads but this is invisible to 
the APEX layer.  

With this approach only Core depends directly 
on the POSIX API. The POSIX-dependent Core 
may be replaced by any other Core implementation, 
using another API – perhaps of yet another RTOS 
that does not support POSIX but ITRON, for 
instance. It is even possible to implement the Core 
layer itself as a standalone OS, e.g. for the support 
of new functionalities not available in traditional 
commercial-off-the-shelf OS.  



  
Figure 4: Portable APEX Architecture 

Core Layer Abstractions 
The Core layer is the basis for the Portable 

APEX implementation. Its main objective is to 
encapsulate the OS-, i.e. the POSIX-dependent 
parts of the APEX. It provides basic services to 
upper layers. The following abstractions are made 
available by the Core layer: 

A Thread Datatype composed of a priority 
value and an entry point with the associated 
parameters. Besides thread creation, services 
provided include setting and getting a thread’s 
priority.  

The Core thread priority model consists of 
three states for user processes:  RUNNING, NON-
RUNNING or IDLE. These states are used by the 
scheduler to control process execution. 
Additionally, there is a set of priorities for internal 
use, for the time manager and the process scheduler 
for instance. [19,20] 

Mutex Mechanisms offering the basic locking 
and unlocking primitives; these internal locking 
primitives use protocols for priority inversion 
avoidance [25]. 

 A Time Representation is provided to the 
above APEX layer, making it independent of a 
specific time notion. Services made available 
include time conversion between APEX layer time 
(as described in the standard [3]) and the abstract 
Core layer.  

A Signal Model composed of signalling and 
signal waiting abstractions that facilitate 

communication between the Portable APEX system 
threads. 

A PMK Interface, taken the AIR PMK as a 
significant representative of an ARINC 653 MOS, 
composed of a set of functions that service the 
APEX layer modules that directly interact with the 
MOS (e.g. the APEX layer Partition Management).  

These Core functional components are 
intended to provide the services required for the 
APEX implementation. They hide the platform 
specifics from the APEX level enabling the APEX 
portability even to non-POSIX systems without any 
changes. The necessary changes are limited to the 
Core layer.  

APEX Layer Services 
Main objective of the APEX layer is to provide 

the applications with the set of primitives defined in 
the ARINC 653 standard specification and supply 
compatibility/portability to APEX based 
applications. This layer relies only on the Core 
layer. The APEX can be ported to another system 
without any changes. All platform-specific 
functionality is hidden in the Core layer.  

 

 

 
Figure 5: APEX Services 

The APEX-Interface aims to provide services 
for (see Figure 5): 

Partition management; 

Process management; 

Time management; 

Intra-partition communication; 

Inter-partition communication; 

Health Monitoring. 

A set of modules implements these services: 



Partition Management Module: The standard 
services for partition management essentially 
provide means for modifying the operating mode of 
partitions. This module relies on the underlying 
Core layer PMK interface for partition schedule 
control and execution. 

Process Management Module: The objective 
of this module is to implement the APEX process 
management and its core functionality, the process 
scheduler. The process scheduler must be safe and 
simple in terms of code, exhibiting low processing 
overheads and providing strict compliance with the 
ARINC 653 standard [3,6].  

The adopted solution follows known scheduler 
design approaches [19], using the Core thread data 
type abstraction.  

An ARINC 653 process can be in one of the 
four available states, these are as follows: 

Dormant - process ineligible for scheduling; 

Waiting - process is not able to execute; 

Ready - process is able to be executed; 

Running - process is currently executing. 

The APEX processes are maintained in lists 
according to these states. The states are mapped to 
priorities of the Core thread data type: the running 
process has RUNNING priority, Ready, Waiting 
and Dormant processes have NON-RUNNING 
priority.  

To avoid that a non-running process becomes 
eligible to the processor, an idle process with a 
middle priority is inserted. Its priority is lower than 
the running process priority but higher than the non-
running process priority. Unless the scheduler 
explicitly selects a process to gain running priority 
it has no hypothesis to run [19,20]. 

Time Manager Module: The implementation 
of time management addressed ARINC 653 
standard definition [3]: Time is unique and 
independent of partition execution within a core 
module. All values or capacities are related to this 
unique time and are not relative to any partition 
execution. 

The time manager is an essential module of the 
APEX layer, in the sense that it shall provide all the 
fundamental time related support for APEX 
services. The main services provided by the Time 
Manager are: 

• A function to retrieve the current system 
time; the APEX service GET_TIME is 
directly mapped to this routine. 

• A wait and time-out mechanism. The 
APEX requires the capability to schedule an 
event in the future while the process 
proceeds execution. The occurrence of the 
event is verified by the time manager and 
must cause an action like raising an error or 
cause the change in the process state. 

• A replenish service to increase the time 
budget of a process with a hard real-time 
deadline. 

The time manager provides interfaces to 
register and cancel events, like wait intervals and 
time-outs. Events are scheduled by the Time 
Manager according to the time of their occurrence: 
events related to time points closer to the current 
time are placed in the head of the event list. The 
Time Manager waits until the first event of its 
schedule occurs.  

Together with the Process Management 
services, the Time Manager services handling time-
outs and wait intervals guarantee that processes are 
set to the appropriate state timely. This interaction 
of process and time management contributes to 
guarantee the real-time characteristics of the APEX 
and the applications running on top of it [21]. In 
this context, another important contribution of the 
AIR project concerns the use of traditional and 
improved process schedulability analysis for 
ARINC 653 based systems, thus securing the 
provisioning of real-time guarantees [26]. 

Intra-partition communication: 

Intra-partition communication is used for 
communication and synchronization of processes 
within the same partition. Processes interoperate via 
Message Buffers, Blackboards, Events and 
Semaphores [3].  

Processes may block for an optionally 
specified period of time when accessing a given 
intra-partition communication resource that is 
currently not available. Each resource manages its 
associated list of blocked processes, keeping them 
ordered either by priority or by time of arrival 
(First-In-First-Out). A process leaves the list of 
blocked processes if the resource becomes available 
to it or the specified time-out expires.  



Inter-partition communication Interfaces: 

This module implements the communication 
means between processes in different partitions. All 
inter-partition communication is conducted via 
messages. When sent by user applications, 
messages are copied into local buffers. The 
underlying PMK is then responsible for actually 
transferring a given message to the corresponding 
buffer in the target partition, providing the physical 
means to activate message exchange between the 
source process and the outer destination. 

Conformance to the Standard 
The conformance of the Portable APEX to the 

ARINC 653 standard is currently validated by 
means of the ARINC 653 Verification Test Suite 
(AVT) [22]. AVT is a verification tool, developed 
by Skysoft Portugal, S.A., that implements part 3 of 
the ARINC 653 standard, the Conformity Test 
Specification [23]. Passing this conformity test 
makes the Portable APEX, after SysGo’s PikeOS 
and Wind River’s VxWorks 653 2.1 and 2.2, the 
fourth system able to prove its compliance to the 
ARINC 653 standard. 

Conclusions  
The Portable APEX is a contribution to the 

idea of Open Standards. The ARINC 653 
specification gives a clear definition of interfaces 
and behavior of the APEX. The POSIX standard on 
the other hand provides means, available on most 
modern commercial and open source Operating 
Systems, to implement these interfaces and their 
visible behavior.  

The fact that the Portable APEX is based on 
POSIX interfaces does not imply that the 
implementation is just a simple mapping of ARINC 
653-defined functionality on the POSIX 
counterparts. There is a need to control resources 
for recovery actions, for error detection and for 
further debugging and monitoring purposes. This 
gives room for implementations to compete.  

In the Automotive Industry a standard for the 
integration of components by different vendors was 
defined. This standard is called AUTOSAR 
(AUTomotive Open System ARchitecture) [24]. 
The credo of the AUTOSAR initiative may be 
adopted for the given context; the goal is to 
“cooperate on standards and to compete on 

implementations”. The same idea should be applied 
to the Portable APEX concept. 
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