Exploiting AIR Composability towards
Spacecraft Onboard Software Update

Joaquim Rosa, & Craveiro, and JésRufino

* Universidade de Lisboa, Faculdade démiias, LaSIGE

Abstract. The AIR architecture, developed to meet the interests of the aerospace
industry, defines a partitioned environment for the development opace ap-
plications, adopting the temporal and spatial partitioning (TSP) appr@axh,
addressing real-time and safety issues. The AIR Technology inclugesuih

port for mode-based schedules, allowing to alternate between schgethdites
during a mission, according to different mission’s operation planghEtmore,

it can be necessary, useful or even primordial having the possibilitpsorrew
applications in the unmanned spacecraft onboard computer platforreau-e
tion time. In this paper we define the foundations of a methodology foramabo
software update, taking advantage of the composability properties of IRe A
architecture, in order to add new features to the mission plan.

Resumo.A arquitectura AIR, desenvolvida para responder aos interesses da in
dustria aeroespacial, define um ambiente compartimentado para o aesenv
mento de aplicaies aeroespaciais que adoptem a abordagem de compartimen-
tacgdo temporal e espacial, discutindo qdestde tempo-real e de seguranga no
funcionamento. A Tecnologia AIR inclui o suporte para alternar erérios mo-

dos de escalonamento durante uma &ussle acordo com diferentes planos de
funcionamento. Am disso, pode ser necass, Util ou mesmo primordial ter

a possibilidade de alojar novas aplidas ou funcionalidades no computador de
bordo do véculo espacial @o-tripulado em tempo de exe@s; Neste artigo defi-
nimos os fundamentos de uma metodologia para actuabzie software durante

o funcionamento do sistema, aproveitando as propriedades de cibitigade

da arquitectura AIR, para adicionar novas funcionalidades ao plamisg&o.

1 Introduction

Future space missions aiming long-term durations call foe\a generation of space-
crafts. This has driven the interest from the space ageaci@sndustry partners in the
definition and design of fundamental building blocks for oattl computer platforms,
where the strict demands for reliability, timeliness, safend security are combined
with an overall requirement to reduce the size, weight andgp@onsumption (SWaP)
of the computational infrastructure.

* This work was partially developed within the scope of the European SpacecAg@movation Triangle Initiative pro-
gram, through ESTEC Contract 21217/07/NL/CB, Project AIR-Il (ARINC 653 pa RTOS — Industrial Initiative,
http://air.di.fc.ul.pt). This work was partially supported by Fun@acpara a Gincia e a Tecnologia (Portuguese Foun-
dation for Science and Technology), through the Multiannual Funding and-€bttugal Programs and the Individual
Doctoral Grant SFRH/BD/60193/2009.

INForum 2010 - IT Simpésio de Informaética, Luis S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 675-686

The definition of partitioned architectures implementihg togical containment
of applications in criticality domains, named partitioafipws to host different appli-
cations in the same computational infrastructure and esatble fulfilment of those
requirements [14]. The notion of temporal and spatial parting (TSP) ensures that
the activities in one partition do not affect the timing ofigities in other partitions and
prevents the applications to access the addressing spaeelobther.

The AIR (ARINC 653 In Space Real-Time Operating System) hetbgy emerges
as a partitioned architecture for aerospace applicatibBisgpplying the TSP concepts.
The AIR architecture allows the execution of both real-tamel generic operating sys-
tems in independent partitions, ensures independencelfi®processing infrastructure
and enables independent verification and validation ofvso# components.

In a partitioned architecture, the several functions of amanned spacecraft, such
as Attitude and Orbit Control Subsystem (AOCS), Telemétrscking and Command
(TTC) subsystem, share the same computational resoures) bosted in different
partitions. Partitions are scheduled according to fixedicgcheduling tables. The AIR
architecture allows the possibility to dynamically alt@te between different schedul-
ing tables. This is useful for the adaptation of partitiohestuling to different mission
operating modes and for the accommodation of componentésil[13].

During the course of a mission, situations may appear ontwihimay be useful or
even necessary to introduce new functions or to modify iexjsines to deal with unex-
pected events. For example, in the presence of a failuredefic component, it may
be necessary to change the mission plan by reconfiguringpghieations’ scheduling.
An example where such features had an important role wastigeint with NASA's
rover Spirit [4]. In May 2009 the rover was stuck on Mars s@fih@ terrain and after
some months of trying to release it without success, the N&\®Am decided to change
the mission plan and instead of doing surface explorattmrover started working as
a stationary research platform, performing functions thatild not be possible to a
mobile platform, such as detecting oscillations in the ptanrotation which would
indicate a liquid core.

The modular design of the AIR architecture and the separaticapplications in
the temporal and spatial domains enables composabilifyepties which are exploited
in the build and integration process. This means that therabzomponents can be
developed, verified and validated independently. To a sofvprovider, this procedure
does not depend on knowledge of the other partitions andpat,ns aided by guide-
lines to accomplish timeliness requirements. To the systéegrator, it is assigned the
responsibility of ensuring the accomplishment of systeitleviemporal requirements.
This paper addresses how to take advantage of the comptspimberties of the AIR
architecture to establish the basis of an onboard softwaatate methodology.

The remainder of this paper is organized as follows. In 8ac® we describe the
AIR Technology including the schedulability and compo$gbproperties of the ar-
chitecture, and the build and integration process. In 8e@&j we describe the require-
ments, the components and the integration process of theaomisoftware update,
along with the methodology defined. In Section 4, we exposgduesearch directions
and some related work. Finally, Section 5 concludes therpape

676 INForumMm 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

2 AIR Technology Design

The AIR Technology design was original prompted by the igenf the European
Space Agency (ESA) in the adoption of TSP concepts to theesipalcistry. The AIR

Technology is currently evolving towards an industrialgwot definition by improving

and completing its architecture definition and engineepirggess [12,13].

2.1 System Architecture

The AIR architecture, illustrated in Fig. 1, allows apptioas to be executed in logical
containers called partitions. At the application softwaseer (Fig. 1) applications con-
sist in general of one or more processes, which make use aktivices provided by
anApplication ExecutivéAPEX) interface as defined in ARINC 653 specification [1].
In addition, a system partition may invoke also specific fioms provided by the core
software layer, thus being allowed to bypass the standaiXAiRterface (Fig. 1).

Apphcatlon Software Layer

System System
Partition 1./ iieeennnnen Partition
i] i]

(APEXIn(erface) (APEXImevlace) (APEX Interface) (APEX\nter'ace(subset))
i

l Corel Software Layer l
. System Specs j (GenerlchynnSp j
nnnnnn OS Kernel Functions
OSM mm OSM pt atio POS Adaptation Layer POS Adaptation Layer

ARINC 653 Partition Management Kernel (PMK)

H

Fig. 1. AIR Architecture and Integration of Partition Operating Systems

The core software layer provides a (real-time or generi@rajing system kernel
per partition herein referred to @%artition Operating SystenPOS). TheAIR POS
Adaptation Layer(PAL) [6] wraps each POS, hiding its particularities frone tAIR
architecture components.

The AIR architecture implements the advanced notion ofgidet APEX, meaning
portability between the different POSs is built on the alzility of PAL related func-
tions and on the APEX core layer, which may exploit the POS#Rli@ation program-
ming interface available on most (real-time) operatingeys. The APEX provides the
required partition and process management services, tiamagement services, intra-
partition and inter-partition communication services aedlth monitoring services.

The partition management, inter-partition communicatéod health monitoring
services rely additionally on th&IR Partition Management Kern@PMK) service inter-
face. The AIR PMK bears the most responsibility in ensurwigust TSP. The temporal
partitioning is achieved by scheduling the partitions adog to a given scheduling

Exploiting AIR Composability ... INForumMm 2010 — 677

table, repeated cyclically overraajor time framegMTF). The spatial partitioning is
ensured by a high-level abstraction layer which providesapping between AIR pro-
tection requirements and the hardware’s addressing spatzefion mechanisms.
The AIR architecture also incorporatesiaalth Monitor(HM) component to han-
dle hardware and software errors, containing them withéir tthomains of occurrence.

2.2 Temporal and Spatial Partitioning

To ensure the safety and timeliness of mission-criticalesys and minimize the draw-
backs arising from the integration of multiple function@shg the same hardware re-
sources, the design of AIR Technology proposes the art¢hitdqorinciple of robust
partitioning. With partitioning we achieve two importanbperties. The first concerns
containing the occurrence of faults to the context wherg #ppear, and thus not in-
terfering with the system overall behaviour. The other prophas to do with system
composabilityenabling the independent verification and validation ofvgafe compo-
nents that also facilitates the overall certification psscdundamental for space-borne
vehicles.

The AIR architecture has been designed to fulfil the requeresfor robust TSP.
Temporal partitioning ensures that the activities proeg$s one partition do not affect
the real-time requisites of the functions running in othartition. Space partitioning
relies on having separate addressing spaces and thus owingllan application to
access the memory and input/output (1/0) spaces of a diffeartition.

2.3 Designing for Schedulability

The original ARINC 653 [1] notion of a single fixed partitiontseeduling table, defined
offline, is limited in terms of timeliness control and fawldrance. The design of the
AIR architecture incorporates the advanced notiomofle-based partition schedules
allowing temporal requirements to vary according to thesioiss phase or mode of
operation [13,2].

An AIR-based system includes a set of partition schedulegsngmwhich it can
switch during its operation. A schedule switch can be ordldne a specific partition
designed and allowed to do so, through the invocation of aBXAprimitive. This can,
in turn, result from either a command issued from ground robmir from reacting to
environmental conditions as obtained by the spacecradtisas. The order will not
come into immediate effect, but rather applied at the end@turrent MTF.

The AIR Partition Scheduler component is responsible fargnteeing that the
processing resources are, at every time, assigned to thectpartition and for mak-
ing schedule switch effective at the end of the respectivd-M{B implementation is
described in pseudocode in Algorithm 1. This is executedratyesystem clock tick,
inside the respective interrupt service routine. The im@etation of this algorithm is
optimized to introduce little overhead to such routine.

The first verification to be made is whether the current irtstaa partition preemp-
tion point (line 2). In case it is not, the execution of thetjiimn scheduler is over; this
is both the best case and the most frequent one. If it is diparpreemption point, we

678

INForumM 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

Algorithm 1 AIR Partition Scheduler featuring mode-based schedules

1: ticks < ticks + 1 > ticks is the global system clock tick counter
2: if SChEdUZ&Scu'r'rentSchedule~tabletablelte7uto7'-tiCk -

(ticks — lastScheduleSwitch) mod schedules currentSchedute-mtf then
3: if currentSchedule # nextSchedule N

(ticks — lastScheduleSwitch) mod schedules currentSchedute-mtf = 0 then

4 currentSchedule «— nextSchedule
5 lastScheduleSwitch « ticks
6: tablelterator « 0
7
8
9

end if
heir Partition < schedules currentSchedule - tabletabierterator - partition
tablelterator «— (tablelterator 4+ 1) mod
schedules currentScheduie - numberPartition PreemptionPoints
10: end if

then verify (line 3) if there is a pending scheduling switclve applied and if the current
instant is also the end of the MTF. If these conditions apthign a different partition
scheduling table will be used henceforth (line 4). The gartiwhich will hold the pro-
cessing resources until the next preemption point, duldibeti¢ir partition, is obtained
from the partition scheduling table in use (line 8) and th& Rartition Scheduler will
now be set to expect the next partition preemption poine(@n

2.4 Designing for Composability

The design of the AIR architecture and the use of a TSP appreaables theom-
posability propertieof AIR-based systems, in both time and space domains. The use
of a fixed cyclic partition scheduling scheme dictates thattimeliness guarantees of
each partition are defined by the processing time assignealdo partition. In the spa-

tial domain the composability properties ensure that thitipen’s memory and 1/O
resources are protected against unauthorized access tfhempartitions. The compos-
ability properties are thus inherent the AIR modular aettitre.

The modularity of the AIR architecture design and of its thaihd integration pro-
cess further enables the composability of AIR-based sys{BinThis means, on a first
approach, that the several components that may composesysgtem can be devel-
oped, verified and validated independently. This ease#ication efforts, since only
modified modules need to be reevaluated. It is also a fundaineasis for onboard
software update as proposed in this paper.

From the point of view of one partition’s provider, this fluetr signifies that develop-
ment and validation does not depend on knowledge of the p#métions (individually
or as a whole). At most, the development of one partition khba aided by a set of
guidelines for its applicability to the target TSP systemgeneral. The system integra-
tor is responsible for guaranteeing a correct partitioredaling, so that partitions and
the system as a whole meet their timing requisites [5].

Exploiting AIR Composability ... INForuMm 2010 — 679

2.5 Build and Integration Process

Because of the particularities of the architecture, théwso® build and integration
process needs to differ from the canonical applicationdbpilbbcess, as provided by
standard compilers and linkers. This process is picturdeign 2 and it will now be
described in detail.

APEX Header File

p Remote boot image
oe®, ™
| - o &
| @
— " pApplication
Specific functions Object files
(System Paritions only) (Application)

Executable image

Gbject fie
(systom)

APEX Interface
DO O
([N Nea)
DO O

Dl L. | | g = = OQafle o Obecfle o
T (F r y
|
|
AIR PAL Header Files Objectlibrary | | Object file
|
|

(APEX) (Parition)

AIR PAL

XX l)
= 8B T
\- - ® | Partition timing |
POS Source Code Object liorary | |

(a) Software build by partition application (b) System integration
developers

Configuration |
and PSTs |

) object fles

Object file
(AR PV)

| scheduling
| analysis

(XML file) analysis

Fig. 2. AIR build and integration process

Partition build process

The first stage concerns building each partition indepethd@rig. 2a). In the typical
scenario, the applications to be executed in the contexpaftition, the APEX library,
and the underlying POS libraries (wrapped by the AIR PAL) rbayprovided by dif-
ferent teams or providers. Therefore, the build procesalisred to expect these inde-
pendent object files, and link them together to produce agobkje with no unresolved
symbols but including relocation information (to allowking with the remaining par-
titions). Although the AIR PAL also invokes the AIR PMK (whicsymbols are as of
yet undefined), these interactions are wrapped using datstes to reference the ap-
propriate primitives, which the AIR PMK will register by exating code generated at
system integration time with the assistance of a specific ttiR

The introduction of a scheduling analysis phase in the egftin developers’ soft-
ware production chain [5] takes advantage of the compasapiloperties to provide
independent schedulability analysis. Application depets can perform this analysis
using the timing requirements (period, worst-case exenutime, deadline, etc.) of
their applications’ processes. This information can bkegiestimated, or tentatively
determined through static code analysis [11].

680 INForuwMm 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

System integration

The system integration process (Fig. 2b) receives inputijoa object files) from po-
tentially different teams or providers. Since all partiowill include the common in-
terface provided by the AIR PAL and AIR APEX libraries, theigals partitions’ object
files will have symbol name collisions; partitions runnitg tsame POS or POSs pro-
viding the same standardized interfaces (e. g., POSIX) add#ional name collisions.
Therefore, linking these objects will require previousgroeessing. This preprocess-
ing can be in the form of &ag filter utility which prefixes all symbols and calls in each
partition’s object files with unique prefixes (e. 1, P2, etc.). This process can be
further optimized by automating the generation of pantitmefixes, namely deriving
them from the configuration file.

The partition objects can now be linked with the AIR PMK and ttonfiguration
object. This configuration object is derived by compiling @usce code files, which
in turn have been converted from XML (Extensible Markup Laage) configuration
files. The use of XML for the configuration file is motivated lhetoverall intention
to comply, up to a certain degree, with the ARINC 653 spedifica[1]. Besides the
parameters translated from these XML files (such as partgheduling tables, ad-
dressing spaces, and inter-partition communication @ortschannels), configuration
objects include routines for the AIR PMK to register the adstg primitives in the AIR
PAL structures. This linking step produces the system abijie; from which in turn
one can generate the most adequate deployment format ftarthes platform. In the
system integration phase, scheduling analysis capabkibtiall be introduced in relation
with the generation of a system-wide configuration [5].

3 Onboard Software Update

We establish the foundations of a methodology to allow iditlg new features on a
spacecraft during a mission. The challenges we face areddiamaintaining the real-
time and safety guarantees defined for the original misgidding a new application
to the system should be performed in a way that does not affeadverall behaviour
of the system, including the timeliness of the already rogrpplications.

3.1 Defining Requirements and Components

To support the upload of modified software components to paeecraft's onboard
computer platform, we assume the existence of a (securencoiation channel and
a data communication protocol. The communication funetimimoard the spacecraft are
responsible for dealing with the reception of the data sgithé ground station and for
performing online processing of the transferred data sirétandling the update of on-
board software components implies: the identification efdbmponents being updated
(partition software components, PSTs sets); the allocaifdhe required memory re-
sources; the functional integration of each componenténofireration of the onboard
computer platform. The onboard software update handldl seamplemented as an
activity (process/thread) in the domain of the (systemifiam associated to the com-
munication functions.

Exploiting AIR Composability ... INForuMm 2010 - 681

To the partition hosting the communication functions it isered a given time
processing budget. However, we assume that software updtitéies are performed
on a best-effort basis, thus with minimal impact on the timedds of the communication
functions. This ensures the safety of onboard softwaretepiace it will not interfere
with other communication functions, namely with the datatiand the identification
of ground commands.

To support the introduction of onboard software update agars, the original
APEX interface must be extended with the services presentddble 1. However,
only the APEX interface of the partition hosting the onboswétware update functions
needs to be extended.

Table 1. Extended APEX services for Onboard Software Update

Primitive Short description

XAPEX_MALLOC Allocate memory from the partition’s free memory pool
XAPEX_MFREE Deallocate a memory zone for the partition’s free memory pool

XAPEX_MCLAIM Claim memory from a specified partition for the partition’s free n@m
pool

XAPEX_PUPDATE Apply partition software components update
XAPEX_PSTUPDATE Apply system partition scheduling table (PST) set update

3.2 Integration on Spacecraft Onboard Platform

We assume the component dedicated to onboard softwareepidatUpdate Handler,
is defined as a process/thread integrated in the partitgporesible for the communi-
cation functions, as illustrated in the simplified spackaechitecture [8], pictured in

Fig. 3. This partition also includes a command detectiorction. Commands issued
from ground mission control will be passed to the TTC throaghter-partition com-

munication channel. One example is a ground command to elaRHT.

AOCS TTC Communications

Attitude and Orbit Control Subsystem Telemetry, Tracking and Command

{Command: Change Schedule (PST)} { %mﬂ?::

Update
Handler

Load Updated Applications
Load Updated PSTs Set

X4

Fig. 3. Spacecraft onboard platform

682 INForuwMm 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

3.3 Designing an Onboard Software Update Methodology

The design of a methodology for onboard software update R-Bdsed systems has
evolved from the build and integration process. This medhagly is extended to cope
with the modification of software components in order to @pigrthe original mission.

This may include the modification of application softwarartjion or system wide
configurations or simple the definition of a new set of pantiticheduling tables (PSTSs).
The complete methodology consists in a four-step proceaisifellows:

STEP 1: Offline Verification and Validation of Software Modifications

The modifications to the software components of a given aissiay include the re-
design of the applications associated with a given pamtifeg., payload functions)
and the definition of a new set of PSTs. The linking of the medifpartition with the
objects of other partitions is made on the logical addressesin order to guarantee
that the mapping of unmodified partitions remains unchanghbis way, only the up-
dated components need to be uploaded to the spacecraftrdnimraputer platform.
This process is illustrated at the left side of Fig. 4 and nmegplve scheduling analysis
of the partition. The update of the mission may simply ineottie modification of a
given PSTs set. In this case, the schedulability analydistl@ generation of a new
configuration and PSTs set is only performed at the systeggiiation stage.

This corresponds to the AIR original verification and vatida process of software
components performed on the ground, before sending thecapphs to the spacecraft,
and consists on applying the build and integration processisure that the safety and
the TSP requirements would not be compromised with the daizbon of new com-
ponents on the system. Due to the composability properfigseoAIR architecture,
the build process may be done by the software developmemistea providers inde-
pendently. Each team or provider, along with the new apgtinadelivers the partition
timing requirements, that altogether will form the paatitischeduling tables (PSTs),
used by the AIR PMK Partition Scheduler on the target system.

The output produced in this step is the system object fileltex from the integra-
tion of all the built objects potentially from various deopérs.

STEP 2: Extraction of Updated Components

After having the result of the build and integration procdeae on the previous step,
there is the need to identify which components need to beadpld to the spacecraft
onboard computer platform. The final goal of this step is entdy those components,
extract them from the complete system object file and createnaobject composed
only by the components to be uploaded to the spacecraft othlboanputer. Also, it is
necessary to build the object file according to a specific &yin order to the Update
Handler be able to recognize the data received and perferhaitdling.

Like the previous one, this step is made on the ground. Itiregja special-purpose
toolset to perform the extraction and the formatting fumas$i. The extraction and the
formatting actions are represented by the shaded area@githeside of Fig. 4.

Finally, the updated object will be uploaded to the spadeasing the communica-
tion facilities to exchange data between the ground statmal the space vehicles.

Exploiting AIR Composability ... INForuM 2010 — 683

STEP 1 STEP 2

APEX Header File

@

* e
Name collisions No name collisions

e
(> & @

B Onboard Software Update extensions
| objectfie | Object file | Onboard Software Cpaate extensions. .
- o @ » [— | p (Pariition 1) | (Partition 1) | |
| - o @ |
~— — — — —/ Application Tag filter|
Specific functions Object files | - - - |
(System Partitions only) (Application) L | |
Object file Obiject file -
APEX Interface | |] omectlle | e e Object fle |
—~ Object file Object file | and PSTs set) (Update) |
OO O | \ |
O oo
! @ ‘ @ ‘
coo _ — | I
AIR PAL Header Files Object liorary | 4 | < | |
(APEX) | Configuration and Configuration and
AIR PAL I e v PSTs object files | | PSTs object files |
} | | | (Original mission) |
C X X)) ! S e N
oee ! | B \
- e e | | |
POS Source Code Object library | I contgubtonara |
(Wrapped POS) | L | psTs Ni oy
|
oo | } |
| | I
- L 777777 | Scheduiing analysis |
\) \
- | .
| = - I AIR PMK Object file | %J | |
| Partton timing | (AIR PMK) Partiions timing |
| requirements Scheduling | | romment |
\ les

(XML file) analysis y

Fig. 4. Integration of an AlIR-based system extended with the extraction ancafong of the
updated components

STEP 3: Transfer of Updated Components

In the spacecraft, the application and PSTs uploaded ingéesibject file are received
by the partition running the application responsible fa& tommunication operations.
Complementarily to the formatting done in the Step 2, whennttodified components
were formatted into an object file, the Update Handler lodé the uploaded object file
and separate the application of the PSTs.

We assume the existence of a component which will provideetjgired commu-
nication facilities between the spacecraft and the grotsiuibss.

Upon reception of partition software components the Upéttedler will invoke
the XAPEXMALLOC primitive to allocate the required memory. We assutimat the
available memory is large enough to contain the updatedcagpigin. The Update Han-
dler may also invoke the XAPEXICLAIM primitive to claim the memory used by the
partition being updated, followed by the XAPEXUPDATE primitive which assigns
the updated software components to the specified partitiablé 1). Finally, upon re-
ception of a PSTs set, the Update Handler will invoke the XXPESTUPDATE prim-
itive which will apply the PST set update.

STEP 4: Activation of Updated Components

To guarantee that applying the updated PSTs set does notaanise the safety of the
whole mission, the XAPEXPSTUPDATE (Table 1) will perform a blocking wait until
the proper conditions are met, as described in Algorithmh2 first condition for safe
application of a new set of PSTs is that the currently setestdedule is identical in
both the existing and the updated PSTs sets. The secondioanidithat a schedule

684 INForuwMm 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

switch to a PST which has been modified in the updated set ipamating. The goal
of these conditions is to ensure that the operation comdittbat the system expects
and/or the criteria by which the system or a ground operasrdnosen the current or
next schedule are not voided.

Algorithm 2 XAPEX_PSTUPDATE primitive

1: Whlle SChedulescuﬂ‘entSchedule $—é ne'IUSChedUkScm‘rentSchedule \%

schedules pestschedule Z newSchedules pegtschedute dO > Wait (block)
2: end while
3: SWAP(schedules,newSchedules)

After the new PSTs have been activated, the uploaded paréipplication can now
be scheduled, a situation which may occur upon receivingqadide switch command
from the ground mission control, as illustrated in Fig. 3.

4 Future Developments and Related Work

The importance of a strong verification and validation pssci critical systems is
addressed in [3] and the relevance of a safety-policy vétidat binary level is high-
lighted in [10]. The problem of dependable online upgradeeal-time software was
approached in [16].

The methodology established in this paper for onboard swéwpdate can be fur-
ther extended to cope with the upgrade of critical softwamemonents that must be
performed without interruption, such as those ensuring 80CTC and communica-
tion functions. This implies a new set of challenges to baeskbd specifically in the
steps 3 (transfer of updated components) and 4 (activafiapaated components).
Although driven by the specific requirements of aerospagtiGgtions, these develop-
ments may benefit from the work performed on dynamic softwadate [7,9,15,17].

Solutions for dynamic software update on real-time systesgsiring the identifi-
cation of specific points in time for components’ update s&dssed in [17], while [15]
makes no presumption about new application’s periods aedution times.

The results achieved in [7] shown that the real-time and-falgrant requirements
of avionics systems could be accomplish even during a dymessonfiguration of the
system due to component failures. An approach for dynami@tgpof applications in
C-like languages is provided in [9] and focuses on the updatke code and data at
predetermined times, but does not specify real-time requents.

5 Conclusion

In this paper we described the AIR Technology, towards badtbspace applications
to temporal and spatial partitioning systems. Motivatedhigyneed to add new applica-
tions in the system during a mission, due to changing itsyplae defined the onboard
software update requirements and discussed how to takatadpeeof the composability

Exploiting AIR Composability ... INForuMm 2010 - 685

inherent to the build and integration process of the AlReldasystems. We establish
a methodology for onboard software update, that explogstimposability properties
of the AIR architecture, allowing independent verificataomd validation. The onboard
software update methodology is based on the redefinitioheobtiginal space mission
and it is supported on a specific toolset for the extractiomefupdated software com-
ponents, to be uploaded to the spacecraft onboard comphiemethodology can be
further extended to support dynamic update of criticahgafe components.

References

1. AEEC (Airlines Electronic Engineering Committee): Avionics applicatiditveare standard
interface, part 1 - required services. ARINC Specification 653Pdlk 006)

2. AEEC (Airlines Electronic Engineering Committee): Avionics applicatiditveare standard
interface, part 2 - extended services. ARINC Specification 653R2& 2008)

3. Bahill, A.T., Henderson, S.J.: Requirements development, \aidit, and validation exhib-
ited in famous failures. Systems Engineering 8(1), 1-14 (2005)

4. Brown, D., Webster, G.: Now a Stationary Research Platform, NASA
Mars Rover Spirit Starts a New Chapter in Red Planet Scientific Studies.
http://www.nasa.gov/missiopages/mer/news/mer20100126.html (Jan 2010)

5. Craveiro, J., Rufino, J.: Schedulability analysis in partitioned sysfemnagrospace avionics.
In: Proc. 15th IEEE Int. Conf. on Emerging Technologies and Facdoipmation (ETFA
2010). Bilbao, Spain (Sep 2010)

6. Craveiro, J., Rufino, J., Schoofs, T., Windsor, J.: Flexibleatirey system integration in par-
titioned aerospace systems. In: Actas do INForum - $sigpde Infornatica 2009. Lisboa,
Portugal (Sep 2009)

7. Ellis, S.M.: Dynamic software reconfiguration for fault-toleranttéae avionic systems.
Microprocessors and Microsystems 21, 29-39 (1997)

8. Fortescue, P.W.,, Stark, J.P.W., Swinerd, G. (eds.): Spaft&ystems Engineering, 3rd Edi-
tion. Wiley (2003)

9. Hicks, M.: Dynamic software updating. ACM Transactions on Pnogning Languages and
Systems 27(6), 1049-1096 (Nov 2005)

10. Necula, G.C., Lee, P.: Safe kernel extensions without run-timaeking. In: Proc. USENIX
2nd Symposium on Operating Systems Design and Implementation. (il 2B396)

11. Pushner, P., Koza, C.: Calculating the maximum execution time lefime@programs. Jour-
nal of Real-Time Systems 1, 160-176 (Sep 1989)

12. Rufino, J., Craveiro, J., Schoofs, T., Tatibana, C., WindsorAIR Technology: a step
towards ARINC 653 in space. In: Proceedings of the DASIA 2009 “DAtstems In
Aerospace” Conference. EUROSPACE, Istanbul, Turkey (May@200

13. Rufino, J., Craveiro, J., Verissimo, P.: Architecting robustaesistimeliness in a new gen-
eration of aerospace systems. In: Casimiro, A., de Lemos, R. k@céeds.) Architecting
Dependable Systems 7. LNCS, Springer, Berlin Heidelberg (201€3p&ed for publication

14. Rushby, J.: Partitioning in avionics architectures: Requirementhanasms and assurance.
Tech. Rep. NASA CR-1999-209347, SRI International, CaliforniaAld&in 1999)

15. Seifzadeh, H., Kazem, A., Kargahi, M., Movaghar, A.: A meltfar dynamic software up-
dating in real-time systems. In: Proceedings of the 8th IEEE/ACIS Intiemed Conference
on Computer and Information Science. Shanghai, PR China (Jun 2009)

16. Sha, L.: Dependable system upgrade. In: RTSS '98: Proggedinthe |IEEE Real-Time
Systems Symposium. p. 440. IEEE Computer Society, Washington, B&,(1U998)

17. Wahler, M., Ritcher, S., Oriol, M.: Dynamic software updates éai-time systems. In: Pro-
ceedings of the HotSWUp’09. Orlando, Florida, USA (Oct 2009)

686 INForuwMm 2010 Joaquim Rosa, Jodo Craveiro, and José Rufino

