
RTEMS Improvement – Space Qualification of RTEMS

Executive

Helder Silva, José Sousa, Daniel Freitas, Sergio Faustino,

Alexandre Constantino and Manuel Coutinho,

EDISOFT, Empresa de Serviços e Desenvolvimento de Software, S.A.,

Rua Quinta dos Medronheiros - Lazarim,

Apartado 2826-801 Caparica, Portugal

{Helder.Silva, José.Sousa, Daniel.Freitas, Sergio.Faustino,

Alexandre.Constantino, Manuel.Coutinho}@Edisoft.pt

Abstract. RTEMS (Real-Time Executive for Multiprocessor Systems) has been

selected as a possible ESA (European Space Agency) building block for space

missions. As a first step to achieve the category of a building block, RTEMS

must attain TRL (Technological Readiness Level) 6, which is equivalent to a

product release in software engineering. TRL6 is achieved after the successful

evaluation of the RTEMS technology, in this case, after the conclusion of

RTEMS Improvement project. The full qualification of the technology will be

achieved after the successful run of the operating system qualification process,

with the space mission hardware and the application running on top of RTEMS,

like control systems, telecommand or telemetry applications.

Keywords: RTEMS, Space Qualification, Galileo Software Standards, Real-

Time and Embedded Systems.

1 Introduction

This paper presents the current outputs of an industrial activity held by EDISOFT

to facilitate the qualification of RTEMS (Real-Time Executive for Multiprocessing

Systems) for space applications and space missions. The activity has been performed

with and for ESA (European Space Agency) following the GSWS (Galileo Software

Standards) for a DAL (Development Assurance Level) allocation B (software whose

anomalous behaviour would cause or contribute to a failure resulting in a critical

event).

This paper summarizes the presentations made in the last 3 years in DAta Systems

in Aerospace conference in 2007, [1], 2008, [2] and 2009, [3], which describe the

activities performed in ESA contracts [6] and [7] of the RTEMS CENTRE project

(Support and Maintenance CENTRE to RTEMS Operating System), final

presentation made in ESTEC (European Space Research and Technology Centre) in

December 2008 [4] and RTEMS Improvement project, an on-going ESA project.

RTEMS CENTRE objectives were the design, development, maintenance and

integration of tools to augment and sustain RTEMS operating system and the creation

mailto:@Edisoft.pt

and maintenance of technical competences and support site to RTEMS operating

system in Europe. The general idea is to minimize the cost of airborne and space

applications incorporation/integration.

RTEMS Improvement primary objectives are to improve RTEMS product and its

documentation in order to facilitate the qualification of RTEMS for future space

missions, taking into account the specific operational requirements and target

environment and to provide Memory Manager for LEON hardware Memory

Management Unit (MMU).

The first section makes the introduction of the paper, the rationale behind a

qualification process and the description of each of the sections. Section 2 makes a

brief presentation of the RTEMS executive, section 3 provides an overview of the

qualification process and section 5 concludes the paper and highlights some of the

future work of EDISOFT in RTEMS.

2 RTEMS Overview

Real Time Executive for Multiprocessor Systems (RTEMS) is an open source Real

Time Operating System (RTOS) designed for deeply embedded systems that aim to

be competitive with closed source and commercial products [9]. Currently it is

maintained by the On-Line Research Corporation (OAR) albeit many of the features

and platform support for it have been developed by RTEMS users. The first version,

of what is today RTEMS, was released in 1988.

RTEMS supports multiple processors, including SPARC (ERC32 and LEON

family), i386, Power PC and others, complies with several standards (POSIX,

RTEID/ORKID, TCP/IP, µITRON, ANSI C/C++, partially with Ada95), supports

basic kernel features, provides networking (FreeBSD TCP/IP stack, UDP, TCP, etc)

and filesystem functionalities (IMFS, FAT 32/16/12, etc), and includes debugging

features (over Ethernet and serial port). RTEMS was designed to support applications

with the most inflexible time frames requirements, making it possible for the user to

develop hard real time systems [10].

The RTEMS kernel supports several features. The most important are multi-

tasking, networking and support of file systems.

Multi-tasking allows the software to be more responsive and modular, but brings a

lot of issues that must be solved by the kernel. RTEMS makes possible to use multi-

tasking, since it implements three scheduling features (Event driven, Priority driven

and Rate monotonic). The kernel also allows the selection of the modules that are

loaded, avoiding unnecessary delays and memory usage (footprint).

Networking features are also quite valuable, since RTEMS implements several

useful networking protocols. This allows loading a kernel or executive from a

network, using BOOTP (Bootstrap Protocol). This avoids the need to have a complete

operating system running in the target just to load a new executive since it’s loaded

from the network. Other protocols are useful for the application itself, like TCP, UDP,

ICMP, RARP and DHCP. There are also some servers implemented as FTP server,

HTTP server that allows file transfer in an easy manner. The PPP server allows the

connection via dial-up modems and Telnet to control and configure the target system.

RTEMS filesystem provides features like UNIX, e.g., mountable systems,

hierarchical system directory structure, POSIX compliant set of routines for the

manipulation of files and directories.

RTEMS remote debugging is very important, since debugging on site is difficult

due to board constraints. For development itself, RTEMS can build applications in C

and C++, following the ISO standards, and ADA95 (limited). POSIX and µITRON

standards are implemented in the system API’s.

RTEMS can be characterized into three distinct levels [10], the operational,

organizational and conceptual levels.

The operational level defines the relationship between RTEMS and the user

application. The RTEMS installation process ends with two major libraries

(librtemsbsp.a and librtemscpu.a) that are linked with the user application.

The organization level is the approach taken by RTEMS developers to organize

and structure the source code of the operating system. Fig. 1 presents the top level

RTEMS directory structure.

aclocal automake bspkit

scripts

c contrib cpukit

${RTEMS_SRC}

doc make testsuites tools

Fig. 1. RTEMS Directory Structure

The conceptual level is divided in three different layers, the hardware support, the

kernel and the application interface. Applications can be developed in C, C++ and

Ada95 (support is limited for Ada95) using different APIs such as Ada, POSIX,

µITRON and RTEMS’ own API set (based on the RTEID/ORKID standard). All

APIs use RTEMS supercore, except for the Ada API which uses directly the RTEMS’

API as an abstraction layer. The hardware support layer encompasses the processor

and board dependent files as well as a common hardware library. The kernel layer is

the heart of RTEMS and encompasses the super core, the super API and several

portable support libraries. Fig. 2 presents a schematic of the RTEMS conceptual level

architecture.

RTEMS Executive

Hardware

BSP/DriversHardware Library

Classic API managers

Initializaton Task Interrupt Clock Timer Event

Signal

Message

Semaphore

Memory Partition Memory RegionDual Ported Memory

Rate Monotonic I/OMultiprocessing Fatal Error

User Extension

C/C++/Ada application

POSIX 1003.1b API managers

Process Creation and Execution

ITRON 3.0 API managers

Signal

Process Environment Files and Directories

Input and Output PrimitivesDevice and Class Specific Functions

Language-Specific Services for the C Programming Language

System Databases

Semaphore

MutexCondition Variable

Memory Management

Scheduler

Clock Timer

Message Passing

Thread

Key

Thread Cancellation

Task Task-Dependent Synchronization Semaphore Eventflags

Mailbox Message Buffer Rendezvous Interrupt Memory Pool

Fixed Block Time System Network Support

API Layer

POSIX ITRON

ADA

Classic

RTEMS Super Core RTEMS Support

Libraries
Block Devices

Newlib C Library

File Systems

I2C Bus

FreeBSD TCP/IP

Stack

FreeBSD RPC/XDR

ISR Handler

MPCI Handlers

Thread Handlers

Heap Handler

Stack Handler

Workspace Handler

API Handlers

...

Fig. 2. RTEMS Architecture

3 Qualification Process

The qualification process aims to increase the quality of any product and its

associated documentation. This prevents the occurrence of future problems with the

software. The qualification deliverables were produced for RTEMS version 4.8.0 and

for ERC32 (SPARC V7 hardware architecture), LEON2 and LEON3 (SPARC V8

architecture), the hardware boards used and produced by ESA for the space missions.

The qualification process can be made using some of the software engineering

standards like DO-178B, ECSS-E40, ECSS-Q80 and GSWS. Since it was predicted

the usage of RTEMS in Galileo program and since the GSWS is the most complete

standard known in terms of qualification, ESA and EDISOFT decided the usage of

GSWS.

3.1 Galileo Software Standards

The Galileo Software Standard (GSWS) [5] sets requirements to be followed for the

management, evaluation, procurement, development, production, verification,

operation and maintenance of all software products.

It defines procedures to be followed for software engineering, software product

assurance and software configuration management. Several reference life cycles for

the SW Components are defined. Table 1 presents the generic software waterfall life

cycle used for RTEMS Improvement.

Table 1. Generic software waterfall life cycle phases and reviews

Phase SW Review

SW Planning Phase Software Requirements Review

SW Specification Phase Preliminary Design review

SW Design Phase Detailed Design Review

SW Implementation Phase Test Readiness Review

SW Integration and TS-

Validation Phase

Critical Design Review

SW RB-Validation Phase Qualification Review

SW Acceptance Phase Acceptance Review

SW Maintenance Phase --

SW Operation Phase --

The software is then classified with a DAL (Development Assurance Level) that is

dependent of the criticality usage of the software. The levels go from Level A, the

highest level of criticality, to Level E, the lowest level of criticality. RTEMS was

classified as DAL B, since its anomalous behaviour can cause a failure resulting in a

critical event. Based in the DAL selection of the software, the development process,

the deliverables and tests to be performed are fully defined, meaning that each Level

has its own development life-cycle, document deliverables, phases and document

versions. Table 2 makes an overview of GSWS software life cycles, type of software

and DAL.

Table 2. GSWS Life Cycles vs. DAL and Types of Software

Type Of Software DAL A DAL B DAL C DAL D DAL E

Generic Waterfall Waterfall Waterfall Waterfall

Incremental

Waterfall

Incremental

Databases Waterfall Waterfall Waterfall Waterfall Waterfall

MMI Evolutionary Evolutionary Evolutionary Evolutionary Evolutionary

Test Software -- -- -- -- Waterfall

Incremental

Simulators Waterfall Waterfall Waterfall Waterfall Waterfall

Algorithm Prototypes -- -- -- -- Evolutionary

The following figures (Fig. 3, Fig. 4 and Fig. 5) present a sample of the different

life cycles used in GSWS. In the waterfall life cycle, the one used in RTEMS

Improvement, the phases are produced continuously and each phase is marked by a

review meeting.

Fig. 3. Waterfall Project

In the evolutionary life-cycle, the software is built in different builds of design,

implementation, integration and validation, ending by a QR and followed by the

acceptance phase.

Fig. 4. Evolutionary Project

The incremental life-cycle is also built in different builds of just design,

implementation, integration and a pre-validation. A formal validation of all the builds

is necessary.

Fig. 5. Incremental Project

3.2 RTEMS Qualification Overview

The main objective is to provide a qualifiable version of RTEMS. The RTEMS

version 4.8.0 was selected as baseline for the project because it was the latest version

of RTEMS and because it added and fixed important features, like support for time

granularity in nanoseconds, fixed problems on thread's priority, reduced the footprint

for a more compact executable and presented a set of new drivers for LEON2 and

LEON3 processors.

The user is capable of downloading RTEMS and with a configuration tool, is

capable of filtering relevant RTEMS features and removing dead code (applying

patch to the original RTEMS). At the same time, the same tool builds a tailored test

suite that is merged and executed with the tailored version of RTEMS to produce the

final system (operating system sub-set and test case battery) that facilitates the

qualification of the operating system software. Fig. 6 presents a general overview of

final product of the RTEMS Improvement.

Original RTEMS

Patch

Tailorable RTEMS
Tailorable Test

Suite

Options

Tailored RTEMS
Tailored Test

Suite

Fig. 6. RTEMS Tailoring Road Map

Documentation of RTEMS was revised and used as input to create the RTEMS

requirements [16], to reverse engineer RTEMS and to build its architecture [15]. The

design of RTEMS was addressed and constitutes the base for the development and

design of the test battery. Table 3 presents a list of the RTEMS documentation

produced so far by the RTEMS Improvement.

Table 3. List of RTEMS produced Documentation

RTEMS Improvement Data Pack
RTEMS managers candidate evaluation report

RTEMS Improvement Requirement Document

RTEMS Improvement User Manual and Design Notes

RTEMS Improvement Verification Report

Software Budget Report

Product Software Justification File

RTEMS Improvement Design Document

RTEMS Improvement Configuration File

RTEMS Improvement Integration Test Plan

RTEMS Improvement Unit Test Plan

RTEMS Improvement Validation Testing Specification – Technical Specification

RTEMS Tailoring Plan

RTEMS Improvement Generic Test Report

RTEMS Test Suite

RTEMS Improvement Acceptance Test Plan

RTEMS Improvement Maintenance Plan

RTEMS Improvement Installation Report

RTEMS Improvement Acceptance Data Package

RTEMS Tailored

Software Development Plan

Review Plan

Final Report

RTEMS Improvement Product Assurance Plan

RTEMS Improvement Product Assurance Report

RTEMS Improvement Configuration Management Plan

RTEMS Improvement SOC with GSWS

RTEMS Improvement Preliminary Software Criticality Analysis Report

3.3 RTEMS Candidate Managers

Surveys [11] were performed near European Space users (SAAB, OHB and ESA) and

along with the EDISOFT assessment, candidate RTEMS managers were selected.

Table 4 provides the list of the managers currently being used in some space projects

by SAAB and OHB. This information provides RTEMS Improvement guides for the

facilitation of qualification.

Table 4. Space Users Survey Results

RTEMS Managers SAAB Survey OHB Survey ESA SoW

Initialization Manager Yes Yes Yes

Task Manager Yes Yes Yes

Interrupt Manager Yes Yes Yes

Clock Manager Yes Yes Yes

Timer Manager Yes Yes Yes

Semaphore Manager Yes Yes Yes

Message Manager Yes Maybe Yes

Event Manager Yes Maybe Yes

Signal Manager No Maybe Yes

Partition Manager Yes Maybe No

Region Manager No Maybe No

Dual-Ported Memory

Manager

No No No

I/O Manager No Yes Yes

Fatal Error Manager Yes Yes Yes

Rate Monotonic

Manager

Yes Yes Yes

Barrier Manager No Maybe No

User Extensions

Manager

No No Yes

Multiprocessing

Manager

No No Yes

Stack Bounds Checker No No No

CPU Usage Statistics No No No

Based in the survey conducted and a deep analysis of the RTEMS Classic API

Managers and its dependencies, it was possible to select the candidate managers and

primitives to be included in the work. Table 5 displays the results.

Table 5. Selected RTEMS Managers

RTEMS Manager RTEMS Primitive RTEMS Manager RTEMS Primitive
Initialization All directives Clock All directives

Task

rtems_task_create Timer All directives
rtems_task_ident Semaphore All directives
rtems_task_start Message Queue All directives

rtems_task_restart Event All directives
rtems_task_delete I/O rtems_io_initialize

rtems_task_suspend rtems_io_open
rtems_task_resume rtems_io_close

rtems_task_is_suspended rtems_io_read
rtems_task_set_priority rtems_io_write

rtems_task_mode rtems_io_control
rtems_task_get_note Fatal Error All directives
rtems_task_set_note Rate Monotonic rtems_rate_monotonic_creat

e rtems_task_wake_after rtems_rate_monotonic_ident
rtems_task_wake_when rtems_rate_monotonic_cance

l rtems_task_variable_add rtems_rate_monotonic_delet

e rtems_task_variable_get rtems_rate_monotonic_perio

d
rtems_task_variable_delete

rtems_rate_monotonic_get_s
tatus

Interrupt All directives User Extensions All directives

3.4 RTEMS Engineering and Testing

The original version of RTEMS was truncated and several files were removed

because of two main reasons, they were considered unnecessary and they were dead

code. As part of the main goal, one of the project outputs is to provide means to

achieve a RTEMS tailored version starting from the RTEMS original version. The

version shall run in LEON2, LEON3 and ERC32 platforms (Fig. 7).

Fig. 7. RTEMS Engineering and Testing Overview

The tailored RTEMS version consists of patches and scripts that, if applied to the

original RTEMS source code, will remove the unnecessary managers, files, dead code

and bugs. It also adds new files and code, making all necessary code adjustments to

produce the RTEMS tailored version (qualifiable). This version intends to achieve the

Galileo Software Standards Development Assurance Level (DAL) B requirements.

According to the standard, the structural coverage for a DAL-B qualification shall

achieve 100% statement and decision coverage for the source code. Based in these

requirements, the source code cannot contain dead or unused code. The current

coverage of the tests are 86,1% of statement coverage and 3.228 LOC (lines of code)

(API, supercore, RTEMS API and Super API) [12]. The original version of RTEMS,

counting with comments and headers is around 450.000 LOCs.

In the Statement coverage testing, the code is executed in such a manner that every

statement in the code is executed at least once. Branch or Decision Coverage testing

helps to validate all branches in the code and also validates that no branching leads to

abnormal software behaviour.

At a first phase, the code removal was a very sensible operation, since it included

the removal of unselected RTEMS Managers and code shared between RTEMS

Managers.

In the current phase of the project the development team is producing unit and

integration tests to validate the correctness of RTEMS behaviour.

3.5 RTEMS Budget

Software budget analysis [13] was performed to RTEMS. A comparison between the

original RTEMS version and RTEMS tailored was made for all hardware

architectures (ERC32, LEON2 and LEON3) of interest. The measurements taken

were related with interrupt latency timing, interrupt exit timing, context switch

timing, maximum CPU usage, RTEMS API directives timing and memory footprint.

The measurements were based in ESA requirements and the intent was to make a

comparison between the original RTEMS and the RTEMS Tailored for the most

useful characteristics of a real-time operating system. Table 6 presents a sample of

context switch analysis budget.

Table 6. Timing Analysis for Context Switch

 Maximum Time (microseconds)
Section TargetSimERC32 TargetSimLeon2 TargetSimLeon3

RTEMS Version Original Tailored Original Tailored Original Tailored

Context Switch without

FPU
48 48 19 19 19 19

Context Switch with FPU 68 68 20 20 20 20

3.6 RTEMS Criticality Analysis

SW-FMECA (Software Failure Modes Effects and Criticality Analysis) [14] analysis

is a bottom-up technique that identifies modes, causes, effects and criticalities of

failures on end item (software) performance and their external interfaces. The SW-

FMECA main objective is to perform the DAL assessment of each RTEMS

Improvement Component/Sub-Component. The impact of a failure can be

characterized by a severity classification. Each failure mode was analysed to estimate

the severity level.

The SW-FMECA analysis was performed and it was possible to find

recommendations to RTEMS Operating System. The following bullets present the

major recommendations found:

• When a "Fatal Error" (in any state) occurs, the RTEMS Operating System,

before the User Application starts the system, shall switch to a "SAFER"

state (APP_SAFE_STATE). The transition from the

"APP_SAFE_STATE" to the "BEFORE_INIT" state shall be done

through the Operating System re-initialization (performed by the User

Application).

• An Error/Event Handler (Log Manager) to receive all errors from the

RTEMS Operating System and HW devices shall be foreseen in the next

version of RTEMS Operating System, to improve the management of all

errors. The User Application shall access to this "Log Manager" to have

the RTEMS Operating System and HW devices errors.

• The Rate Monotonic Manager shall define the deadline for each thread on

the System, in order to avoid that:

o One thread blocks the execution of other threads (low priority

threads could not be executed and miss their deadlines).

o The execution of one faulty thread (running in loop not

programmed) uses all the resources of the system.

o The system enters in degraded mode.

• The use of Dynamic Memory by the "Heap Handler" during the Initialization

of the RTEMS components like, semaphores, Threads, Message Queues,

timers shall be avoided (Rule 20.4 of [17]).

• RTEMS Operating System shall provide the capability to perform PBIT

(Power On Built-In-Tests) when the system is initiated, in the HW devices

supported in the scope of the project (Clock device and Processor).

4 Conclusions

This paper provided a brief view of the RTEMS Improvement’s project activities. The

activities were centred in the acquisition of know-how and recently the facilitation of

RTEMS qualification. The qualification process is about to be concluded and a new

version of RTEMS will be produced. This new version is based in 4.8.0 of RTEMS.

In a recent future EDISOFT will develop the Memory Manager for the RTEMS OS

for the LEON architecture Memory Management Unit (MMU). The outputs of the

work can be accessed through RTEMS Support Platform [8] and the qualified version

and tools are distributed as open source free package.

References

1. Constantino, A., Silva, H., Mota, M., Zulianello, M.: RTEMS CENTRE – Support and

Maintenance CENTRE to RTEMS Operating System, DAta Systems in Aerospace (2007)

2. Silva, H., Constantino, A., Coutinho, M., Freitas, D., Faustino, S., Mota, M., Colaço, P.,

Zulianello, M.: RTEMS CENTRE – Support and Maintenance CENTRE to RTEMS

Operating System, DAta Systems in Aerospace (2008)

3. Silva, H., Constantino, A., Coutinho, M., Freitas, D., Faustino, S., Mota, M., Colaço, P.,

Sousa, J., Dias, L., Damjanovic, B., Zulianello, M., Rufino, J.: RTEMS CENTRE – Support

and Maintenance CENTRE to RTEMS Operating System, DAta Systems in Aerospace

(2009)

4. Silva, H., RTEMS CENTRE Final presentation and Final Report, ESTEC (European Space

Research and Technology Centre), Noordwijk - Netherlands (2008)

5. GSWS study team: Galileo Software Standards, GAL-SPE-GLI-SYST-A/0092 (2004)

6. EDISOFT: ESA/ESTEC Contract number 20049/05/NL/JD/jk

7. EDISOFT: ESA/ESTEC Contract number 21141/07/NL/JD

8. RTEMS CENTRE website: http://rtemscentre.edisoft.pt

9. RTEMS website: http://www.rtems.com

10.Constantino, A., Freitas, D., Mota, M., Silva, H.: RTEMS CENTRE Software System

Specification, RTEMS CENTRE project (2008)

11.Coutinho, M.: RTEMS Managers Candidate Evaluation Report, RTEMS Improvement

project (2009)

12.Coutinho, M.: RTEMS Improvement Generic Test Report, RTEMS Improvement project

(2009)

13.Freitas, D.: RTEMS Improvement Software Budget Report, RTEMS Improvement project

(2009)

14.Dias, L.: RTEMS Improvement Preliminary Software Criticality Analysis Report, RTEMS

Improvement project (2009)

15.Colaço, P., Coutinho, M.: RTEMS Improvement Software Design Document, RTEMS

Improvement project (2009)

16.Coutinho, M.: RTEMS Improvement Software Requirements Document, RTEMS

Improvement project (2009)

17.MIRA Limited: MISRA-C: 2004 Guidelines for the use of C language in critical systems.

http://rtemscentre.edisoft.pt/
http://www.rtems.com/

