
Embedded Linux in a Partitioned
Architecture for Aerospace Applications

João Craveiro, José Rufino
LaSIGE–FCUL

Lisboa, Portugal
jcraveiro@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Carlos Almeida, Rui Covelo, Pedro Venda
Instituto Superior Técnico

Lisboa, Portugal
cra@comp.ist.utl.pt, ruicovelo@gmail.com, pjvenda@pjvenda.org

Abstract—The ARINC 653 specification, defined for aeronau-
tical applications, has the goal of providing a standard interface
between a given real-time operating system (RTOS) and the
corresponding applications. It also provides robust partitioning,
with the final goal of guaranteeing safety and timeliness in
mission-critical systems. The interest in ARINC 653 has extended
to the aerospace industry, which resulted in the definition of
an architecture, compliant with the specification, allowing for
operating system heterogeneity. In this paper, we introduce
the problem of integrating generic operating systems onto
this architecture, and explore the case of GNU/Linux. Adding
GNU/Linux allows running existing applications or interpreted
scripts without needing to port the application or interpreter to
an RTOS. In embedded systems, we have to cope with scarce
resources and diverse existent hardware, and a balance between
both issues must be reached. For such, we show the genesis of
such a solution.

Index Terms—Aerospace industry, computer applications, op-
erating system kernels, operating systems, processor scheduling,
real time systems.

I. INTRODUCTION

The ARINC 653 specification [1], defined for aeronautical
applications, has the goal of providing a standard interface
between a given real-time operating system (RTOS) and
the corresponding applications — the APEX (Application
Executive) interface. It also presents a concept of temporal
and spatial segregation (which consists in the confining of
each application — partition, in ARINC 653 terminology
— to its memory space and to its temporal window of
possession of computing resources). The overall goal is to
guarantee safety and timeliness in mission-critical systems.
The interest in the concepts of the ARINC 653 specification
has extended to the aerospace industry. The AIR (ARINC 653
Interface in RTOS) project — under an industry consortium
initiative sponsored by the European Space Agency (ESA) —
resulted in the design and definition of a system architecture
compliant with ARINC 653 and independent of each specific
operating system (OS). Currently, the AIR-II (ARINC 653 in
Space RTOS — Industrial Initiative) project is in place, with
the goal of consolidating the AIR technology, and evolving
towards the definition of an industrial product for aerospace
applications. The independence of ARINC 653 towards the
operating system was naturally extended to the developed ar-
chitecture. Thus, the heterogeneity between the RTOS kernels

(RTEMS [2], eCos [3], VxWorks [4], etc.) in the various
partitions was foreseen.

In this paper, we introduce the effort of consolidating
and extending the architectural features to support this het-
erogeneity towards the operating system kernels to inte-
grate in each partition. These should include RTOS kernels
(free/open source, or commercial), and also general-purpose
operating systems kernels, like GNU/Linux. The relevance of
GNU/Linux specially concerns the availability of a wide set
of interfaces together with a wide set of application software.
Access of RTOS applications to these facilities can be achieved
using AIR inter-partition communication.

The paper is organised as follows. Section II presents the
architecture defined in the ARINC 653 specification. Section
III exposes the characteristics and properties of the AIR ar-
chitecture. Section IV introduces the purpose and problematic
of integrating generic operating systems, like GNU/Linux, into
this kind of architecture. It also includes a review of the Linux
state of the art, with emphasis on the features to approach real-
time behaviour. Section V describes the process of obtaining
a GNU/Linux tailored for embedded and/or real-time systems,
using a design-by-reuse approach. Section VI presents the
results from the experiences reported in Section V, namely in
terms of size and functionality comparison against a standard
GNU/Linux distribution. Section VIII closes this paper with
concluding remarks.

II. ARINC 653 CONCEPTS

The ARINC 653 specification is an important block from
the Integrated Modular Avionics (IMA) definition [5], where
the partitioning concept emerges for protection and functional
separation between applications, usually for fault containment
and ease of validation, verification, and certification [1], [6].

A. ARINC 653 System Architecture

The architecture of a standard ARINC 653 system is
sketched in Figure 1. At the application software layer, each
application is executed in a confined context, dubbed partition
in ARINC 653 terminology [1]. The application software layer
may include system partitions intended to manage interactions
with specific hardware devices.

Application partitions consist in general of one or more
processes and can only use the services provided by a logical

Application

Partition 1

Application

Partition N System

Partition 1

System

Partition K

APEX Interface

System Specific

Functions
OS Kernel

Hardware

Fig. 1. Standard ARINC 653 architecture

application executive (APEX) interface, as defined in the
ARINC 653 specification [1]. System partitions may use also
specific functions provided by the core software layer (e.g.
hardware interfacing and device drivers), being allowed to
bypass the standard APEX interface.

The execution environment provided by the OS kernel
module must furnish a relevant set of operating system
services, such as process scheduling and management, time
and clock management, and inter-process synchronisation and
communication.

B. Spatial and Temporal Partitioning

Spatial partitioning ensures that it is not possible for an
application to access the memory space (both code and data)
of another application running on a different partition.

Temporal partitioning ensures that the activities in one
partition do not affect the timing of the activities in any other
partition. In ARINC 653, this is supported by a fixed cycle
based scheduling, where a major time frame (MTF) of fixed
duration is periodically repeated throughout runtime operation.

C. Health Monitoring

The Health Monitoring (HM) functions consist of a set
of mechanisms to monitor system resources and application
components. The HM helps to isolate faults and to prevent
failures from propagating. Within the scope of the ARINC 653
standard specification the HM functions are defined for pro-
cess, partition and system levels [1].

D. ARINC 653 Service Interface

The ARINC 653 service requests define the application
executive APEX interface layer (Figure 1) provided to the
application software developer and the facilities the core
executive shall supply. A set of services is mandatory for strict
compliance with the ARINC 653 standard [1], grouped into the
following major categories: partition and process management,

time management, intra and inter-partition communications,
and health monitoring.

III. ARINC 653 INTERFACE IN REAL-TIME OPERATING
SYSTEMS

The AIR innovation initiative represents a first but signifi-
cant step toward the usage of off-the-shelf open-source RTOS
kernels in the definition and design of ARINC 653 based
systems.

This section describes the fundamental ideas on how a
RTOS kernel can be integrated in an architecture able to offer
the application interface and the functionality required by the
ARINC 653 specification [1], [7].

A. AIR System Architecture

A simple solution for providing the ARINC 653 function-
ality missing in off-the-shelf RTOS kernels, such as the Real-
Time Executive for Multiprocessor Systems (RTEMS) [2],
implies to encapsulate those functions in components with
a well-defined interface and add them to the bare operating
system architecture.

Hardware

Core Software Layer

Application Software Layer

RTOS

Kernel

RTOS

Kernel
System Specific

Functions

RTOS

Kernel
System Specific

Functions

RTOS

Kernel

APEX Interface APEX Interface APEX Interface APEX Interface

…................
System

Partition 1

Application

Partition 1

Application

Partition N
……...

ARINC 653 Partition Management Kernel (PMK)

System

Partition K

Fig. 2. Overview of the AIR system architecture

The design of the AIR architecture in essence preserves the
hardware and RTOS independence defined within the scope of
the ARINC 653 specification [1], [8], [7]. A specific module
(cf. Figure 2) that needs to be added to the RTOS kernel (e.g.
RTEMS) is the AIR Partition Management Kernel (PMK), a
simple microkernel that efficiently handles partition scheduling
and dispatching, as well as inter-partition communication.

Another fundamental component concerns the ARINC 653
application executive (APEX) interface, defining for each
partition in the system a set of services in strict conformity
with the ARINC 653 standard. The APEX interface is designed
as much as possible by mapping the ARINC 653 services into
the native and/or POSIX primitives of the RTOS [1], [2], [3].

B. AIR Robust Partitioning and Composability

Robust partitioning comprises the protection of each par-
tition’s memory addressing space, to be provided by spe-
cific memory protection mechanisms usually implemented in
a hardware memory management unit (MMU). It requires
also a functional protection concerning the management of
privilege levels and restrictions to the execution of privileged
instructions. A basic set of such mechanisms do exist in the

Intel IA-32 architecture (widely used in everyday applications)
and, to a given extent, in the SPARC LEON processor core,
crucial to the European space industry.

The ARINC 653 standard specification [1] restricts the
processing time assigned to each partition, in conformity with
given configuration parameters. The scheduling of partitions
defined by the ARINC 653 standard is strictly deterministic
over time. Each partition has a fixed temporal window in which
it has control over the computational platform. Each partition
is scheduled on a fixed, cyclic basis.

This allows the AIR architecture to cope with hard real-
time requirements and, in a given sense, opens room for the
temporal composability of applications.

IV. INTEGRATION OF GENERIC OPERATING SYSTEMS

Porting applications to one of the RTOS one might be
using (RTEMS [2], eCos [3], VxWorks [4], etc.) can be a
complicated task, and definitely not an error-free one [9], [10].
Furthermore, certain hardware interfaces may be necessary
that are not supported by the given RTOS. This also applies
to the aerospace applications that the AIR architecture targets.
An example is a space probe for planetary observation, within
which a hardware interface with a camera is needed, and
whose pictures need to go through some post-processing by
a widely available application that has not been ported to the
RTOS.

A. GNU/Linux contribution

To address this portability issue, we are evaluating the
approach of having one partition of such a system run
GNU/Linux, a general-purpose operating system based on the
Linux kernel, for which community efforts continuously de-
velop applications and device drivers. In the AIR architecture,
such soft real-time and/or non-real-time applications using the
standard GNU/Linux interface always receive a guaranteed
(albeit shared) execution time window. Such guarantee is
not provided by earlier approaches combining real-time and
GNU/Linux operation in the same execution platform [11],
[12], [13].

The integration of GNU/Linux in the AIR architecture is
shown in Figure 3. A subset of the AIR APEX (Application
Executive) interface is provided, but only for management and
monitoring purposes.

Hardware

Core Software Layer

Application Software Layer

RTOS

Kernel

RTOS

Kernel
System Specific

Functions

RTOS

Kernel
Linux Device

Driver Functions

Linux

Kernel

APEX Interface APEX Interface APEX Interface APEX Interface
(subset)

…........
System

Partition 1

Application

Partition 1

Application

Partition N
……...

ARINC 653 Partition Management Kernel (PMK)

System

Partition K

Fig. 3. Overview of the intended incorporation in the AIR system architecture

In this scenario, existent applications for GNU/Linux can
be used or created without the further effort of having to port
them to a particular RTOS. Another significant advantage is
that the benefits of scripting languages widely used in the
GNU/Linux world can be brought into scene, something which
would otherwise depend on a port of the interpreter to a
particular RTOS.

B. Linux state of the art

Linux is an open source operating system kernel available
free of charge and maintained by developers from all the
world. The source code is accessible for everyone and people
are encouraged to contribute with their own code. For this
reason, the Linux kernel is extremely portable between com-
puter architectures and supports a massive variety of hardware
devices and device drivers. And there’s always space for
more [14]. An increased modularity allows one to easily select
the smallest set of features required for each system, avoiding
unnecessary code. For systems with limited resources, or for
very specific applications such as those found in aerospace,
this may be very important. Additionally, the added support
for a wider variety of hardware devices, computer architec-
tures and the improved build tools help enhance the pace of
development of the kernel itself. This flexibility makes Linux,
and specially Linux 2.6, a good choice for embedded systems
design, and for the provision of (soft) real-time guarantees.

Linux kernel 2.6 allows the preemption of kernel tasks,
i.e. user applications are no longer locked until the end of
all pending system calls before they can continue executing.
This significantly reduces the latency of user applications and
increases the overall system responsiveness.

The original Linux 2.6 O(1) scheduler [15] was further
improved into the Completely Fair Scheduler (CFS), which
wields O(1) complexity for choosing a task and O(log n) for
rescheduling a task after it has executed and becomes ready
again. This is accomplished by the substitution of runqueues
for a red–black tree where the task to choose is always the
root. The CFS also uses nanosecond granularity accounting
(provided by the introduction of high-resolution timers), aban-
doning the notion of timeslices and the need for specific
process interactivity heuristics, while still allowing to tune the
scheduler to cope with different workload patterns [16].

C. Safety issues

In the scope of the integration of GNU/Linux, it is required
that the GNU/Linux partition components will not contami-
nate the robust partitioning properties of the whole system.
One important issue is guaranteeing safe preemption of the
GNU/Linux partition, namely keeping the context of the run-
ning process. Another crucial point concerns the execution of
privileged instructions by the GNU/Linux kernel. This would
be preferably achieved through para-virtualisation techniques.
Otherwise, it is required that some of the GNU/Linux kernel
source code be properly changed.

V. BULLET LINUX

There are a few GNU/Linux distributions available for
embedded systems. However, some are commercial or targeted
at a specific type of device, and others simply have too
much unnecessary features or already have their own kernel
modifications. Having a Linux kernel built from a standard,
unpatched source tree, exactly as distributed by the developers,
is extremely important. The absence of customised patches
ensures easier upgradability and less compatibility issues be-
tween different versions.

Therefore, we analyse how to build a specific version of a
Linux-based operating system targeted for embedded systems
and applications. The main vectors for achieving an effective
balance between functionality and available resources are: 1)
configuration of the Linux kernel; 2) inclusion of functional
features; 3) use of a smaller system library; and 4) provision
of the standard Unix command interface in a more resource-
efficient way. We call this design approach the Bullet Linux.
However, instead of designing a solution totally from scratch,
we follow a design-by-reuse approach, and use as much
available tools as possible.

The foundations of such process have been addressed in the
literature [17], [18]. Next, we describe its application, assess
its effectiveness, and discuss its relevance to embedded and
aerospace systems and applications.

A. Configuring the Linux kernel

The first step to produce a small kernel image for Bullet
Linux exploits the configurability of the Linux kernel. The
configuration of the Linux kernel is performed via a menu-
driven graphical interface. In a first approach, superfluous
features and device drivers were removed.

The diagram in Figure 4 illustrates the overall size differ-
ence between the Linux kernel image included in a generic
distribution, and the image produced for Bullet Linux.

Generic Bullet
2150 KiB 830 KiB

Fig. 4. Size comparison between a kernel in a generic GNU/Linux
distribution and the Bullet Linux kernel

Two specific issues are worth mentioning. One is that,
besides the kernel image, a standard GNU/Linux distribution
ships a set of loadable kernel modules that can amount to
50 MiB1, which were not accounted for in Figure 4, to
make the comparison fairer. The other one is that the size
gain illustrated in Figure 4 is both a combination of feature
selection and using only built-in features.

1This corresponds to the prefixes for binary multiples defined in the IEC
60027-2 standard specification [19].

B. Building in functional features

The reason why no items were included as modules is
that in an embedded solution they must be always present
in memory. Therefore, the design choice was to build in such
functionalities into the kernel.

Figure 5 highlights the exact gain obtainable by removing
the loadable module support and building features in into
the kernel, instead of providing them through modules (with
no condition differences otherwise). The data presented were
obtained by adding, to the Bullet Linux kernel, some extra
functionalities (USB, Ethernet, WLAN, TCP/IP networking,
PCMCIA, and Ext3 filesystem support) and the device drivers
thereto associated. The Ext3 filesystem support was added on
the grounds of the possibility of using an external solid-state
disk through the USB and/or PCMCIA interfaces.

Image Modules TotalBullet
kernel

Module
support

Built-in
features

Modular 830 KiB 225 KiB — 1568 KiB 2623 KiB
Built-in 830 KiB — 644 KiB — 1474 KiB

Fig. 5. Size comparison between the Bullet Linux kernel modular and built-in
approaches to the inclusion of the same features

While adding features and device drivers through a built-
in approach only results on an enlarged kernel image, the
modular approach aggravates the total size in two fronts. On
the one hand, the kernel image is enlarged to include the built-
in support for loadable kernel modules. On the other hand,
the kernel image must be accompanied by a set of several
modules, which bear a noticeable overhead over the alternative
of building those modules’ features in into the kernel image.

C. Small system library

One of the most important components of a Unix-like
system is the system library. The system library provides
application programmers a comprehensive set of services.

The most used system library is the GNU C library
(glibc) [20]. This library is targeted for generic systems,
exhibiting excessive functionality (for embedded systems), a
non-optimised implementation, and a large object size.

An alternative design option is uClibc [21], a C library
specially developed for embedded systems. It features almost
all GNU libc functionality, while exhibiting a small object
size appropriate for systems with low memory resources. The
uClibc developers have accomplished this by reimplementing
it with size optimisations in mind, and by modularising some
functionalities, allowing the configuration of the uClibc library
and its adaptation to the requirements of the target system.

There are alternative small footprint C libraries available,
such as newlib [22] and diet libc [23]. uClibc was chosen
for its maturity and for how well other tools used (BusyBox,
Buildroot) integrate with it.

The use of uClibc allowed Bullet Linux to keep a small
size, when comparing against the use of a standard GNU
libc. Figure 6 illustrates the immediate advantages brought by
uClibc, showing the sizes taken up by both the GNU C library
and uClibc.

glibc uClibc
2474 KiB 368 KiB

Fig. 6. Size comparison between the GNU C Library (glibc) and the uClibc

D. GNU/Linux utilities and tools

A complete Linux-based operating system needs some well-
known command-line utilities and tools. Even using shared
libraries, standard GNU tools can use a lot of space, which is
a real problem when dealing with resources shortage. To effi-
ciently provide this functionality, we use BusyBox [24], which
is a set of those utilities and tools bundled together with a shell
in a single executable. This approach alone reduces memory
size requirements. Furthermore, the developers of BusyBox
have rewritten these tools to be smaller than their original
counterparts. This was accomplished by code optimisations
and by the absence of some of the features, although main-
taining the most important functions. Discarding unneeded
sections from intermediate object files before generating the
BusyBox executable allows a slight additional size gain.

BusyBox was chosen also because it is highly modular and
configurable. It provides a wide array of commands (e.g. core
utilities like dd, network utilities like ifconfig, or editors like
sed) that can be included at this stage, some of which can be
fine tuned as to only include a part of the available features.

Figure 7 shows the difference in size between a set of
tools chosen for Bullet Linux (consisting, mainly, of core
utilities), provided as both standalone executables and as only
one BusyBox executable. The technical difference between
the BusyBox (unstripped) and BusyBox executables is that the
latter (which is the one included in Bullet Linux) was produced
by discarding unneeded sections from the former; this process
is automatically performed when compiling BusyBox.

E. Shell

BusyBox provides a few shell options, the most traditional
of which is the Almquist Shell (ash). Although compatible
with the Bourne shell and suitable for low memory systems,
ash lacks some extras provided by other shells like the
ubiquitous Bourne Again Shell (bash).

Standard BusyBox (unstripped) BusyBox
1932 KiB 440 KiB 363 KiB

Fig. 7. Size comparison between a set of GNU utilities and tools provided
both as separate executables and as a single BusyBox executable (both stripped
and unstripped of unnecessary symbols)

When the use of scripting is needing, one has to evaluate if
the functionality provided by ash is appropriate. Otherwise,
a more appropriate shell can be included, as a standalone
executable. This can be automated during the building process
(cf. Section V-G, ahead).

F. Interpreted/scripting languages

The previous design steps of Bullet Linux leave out the
support for interpreted/scripting languages. The support for
interpreted/scripting languages is extremely interesting for a
wide set of applications, including some of those in the
aerospace domain.

BusyBox does not support any of these interpreters (save
for the aforementioned shells), so support must be added as
standalone executables. Once again, this can be automated
during the building process (Section V-G). Currently, the avail-
able packages are: lua, microperl (Perl without OS-specific
functions), python, ruby, tcl, and php.

G. Building process

Buildroot [25] is a tool suite that makes it easy to generate a
cross-compilation toolchain and other resources for the target
Linux system using the uClibc C library. Buildroot is specially
appropriate for embedded systems engineering, being used to
facilitate the configuration and build process of the uClibc
system library and the BusyBox toolset. It configures builds,
and prepares the cross-compiler environment for the later
build of the system library and toolset. This cross-compiling
environment is necessary because the target architecture for
Bullet Linux may be different from the architecture of the
build system.

In the specific case of Bullet Linux, the kernel was compiled
from unpatched sources with a specific configuration for
the existing devices and interfaces of the prototype systems
(Intel IA-32-based, Ethernet network, and usually no hard-disk
drive). The system library and toolset were also configured to
be as small as possible, while maintaining all the important
functionalities.

Bullet Linux was built with Linux kernel 2.6.26, uClibc
0.9.29 and BusyBox 1.11.13. It is extremely customisable,
inheriting its main components’ flexibility and modularity.

By putting together a specially configured Linux kernel 2.6
for embedded system prototyping, a restricted uClibc system

library (e.g. excluding large file support), and a selected set
of system tools (including the Almquist Shell, several core
utilities, a few archival utilities, and no network utilities or
Ext2 filesystem-related programs), it became possible to build
an entire GNU/Linux operating system that can fit in as little as
2 MiB. This does not include any additional shell or language
interpreter options as standalone executables.

VI. OVERALL RESULTS ANALYSIS

The size gain of Bullet Linux can be analysed by comparing
each of its components individually with the equivalent in
a desktop distribution. Typically, a desktop distribution is
built with standard or lightly patched kernel compiled with
a modular approach; a modular Linux Kernel is composed
of an image plus a set of files that correspond to different
modules. Modules are loaded into memory only if considered
necessary by the system or the user. A typical modular kernel
has an image size slightly above 2 MiB and a set of modules
with about 50 MiB. The system library is a fully featured
GNU libc 2.X (libc 6) along with many other smaller less
generic libraries. The system tools in a desktop distribution
are compiled against its glibc and occupy a big slice of storage
space. Globally, Figure 8 summarises the analysis of size
in two distinct situations: a generic Linux distribution and
Bullet Linux. For comparison sake, we only present the size
occupied, in a standard Linux distribution, by the same system
utilities/tools and libraries included in Bullet Linux.

Kernel System library System tools
Generic Bullet glibc uClibc Generic BusyBox

2150 KiB 830 KiB 2474 KiB 368 KiB 1932 KiB 363 KiB

Fig. 8. Overall size comparison

The results obtained with Bullet Linux open room for its
integration in the AIR architecture. The embedded solution
provided by Bullet Linux allows for an implementation of
Linux-based systems and applications which will always be
entirely present in physical memory. No virtual memory
mechanisms are required, meaning no particular memory
protection scheme is needed for compliance to the ARINC 653
specification and integration in the AIR architecture.

VII. RELATED WORK

The initial approaches for introducing hard real-time pro-
cesses in Linux-based operating systems were given by [11],
[12] in the RTLinux and RTAI design approaches. Both solu-
tions secure real-time behaviour through a low-level specific-
purpose microkernel inserted between the hardware infras-
tructure and the Linux operating system kernel. The Linux
kernel and applicatons run as the idle task of the real-time
microkernel.

A similar approach is followed in the xLuna [13] operating
system, replacing the RTAI/RTLinux microkernel with the
RTEMS kernel. A xLuna microkernel mediates the interactions
between the hardware and the operating system components
(RTEMS and Linux). Linux runs as the lowest priority task.
The xLuna has been targeted to run on the SPARC LEON
processor.

The system described in [26] heavily integrates the Linux
and µITRON kernels, executing Linux as one of the threads
of µITRON. The proposed architecture employs a microkernel
to provide protected execution environments for the embedded
kernels. The microkernel provides the scheduling of embedded
kernel instances. Two scheduling policies in the microkernel
are used for different purposes.

In [27], the suitability of the real-time Linux variant
RTAI/LXRT [12] as an operating system solution observing
spatial and temporal partitioning is evaluated. Temporal seg-
regation of real-time tasks is ensured through a time-triggered
scheduler built on top of the native RTAI real-time kernel.
Though such solution guarantees a given amount of processing
time for each real-time task, Linux kernel and applications are
only scheduled for execution when no other task is ready to
run. A restrictive Application Programming Interface (API)
excludes all operations that affect partitioning.

In the AIR architecture, a guaranteed execution window is
provided for Linux partitions. This allows progress of Linux
applications even under heavy load conditions. An evolution
of the AIR technology foresees advanced improvements, with
dynamic transfer of the processing budget not used by real-
time partitions to non-real-time Linux partitions.

VIII. CONCLUDING REMARKS

In this work, we presented the problem of integrating
generic operating systems onto the AIR architecture, an ar-
chitecture for aerospace applications featuring temporal and
spatial segregation, based on the ARINC 653 specification [1].
This approach tackles the issue of having to port specific
applications to a given RTOS.

We look into GNU/Linux in the perspective of such an
integration (as a partition OS), and show the development
of a fully functional operating system for embedded systems
with scarce storage resources, based on the Linux kernel.
The resulting solution is analysed in terms of how better
it combines with the scarce resources of embedded systems
compared to a standard GNU/Linux distribution.

We call this solution Bullet Linux. It sets the ground for
a consolidated architecture based on the AIR technology,

addressing safety issues, and integration of different partition
operating systems. This architecture inherits the robust parti-
tioning properties introduced in the design of the AIR tech-
nology [7]. The integration of Bullet Linux makes available
to AIR applications a wide range of utilities, tools, language
interpreters (Python, Perl, tcl, etc.), and device drivers. This
specific facilities no longer need to be ported to the RTOS
to construct AIR applications. Should it be a requirement, the
access to those tools can be supported by AIR inter-partition
communication facilities.

The analysis of the impact of the two-level hierarchical
scheduler approach on partition and process schedulability is
an already identified and approached research issue [28], [29],
[30] which will be further dealt with in the next steps of the
present work. This includes particular attention to the impact
on the performance of the Linux applications, which will be
adequately assessed during the development and tests of a
prototype of the hereby presented integration.

ACKNOWLEDGMENT

This work was partially supported by FCT through the Mul-
tiannual Funding Programme. This work was partially devel-
oped within the scope of the ESA (European Space Agency)
Innovation Triangular Initiative program, through ESTEC
Contract 21217/07/NL/CB — Project AIR-II (ARINC 653 in
Space — Industrial Initiative), URL: http://air.di.fc.ul.pt).

The authors would like to thank James Windsor at
ESA/ESTEC for the valuable comments and interest on the
present work.

The authors would also like to thank the staff at Skysoft
Portugal with whom the collaboration within the AIR activities
was most valuable for the pursuit of this line of work: Tobias
Schoofs, Edgar Pascoal, Sérgio Santos, Cássia Tatibana, and
José Neves.

REFERENCES

[1] “Airlines Electronic Engineering Committee (AEEC), Avionics applica-
tion software standard interface (ARINC specification 653-2),” ARINC,
Inc., 2006.

[2] RTEMS C Users Guide, On-Line Applications Research Corporation
(OAR), Feb. 2008, edition 4.8, for RTEMS 4.8.

[3] A. Massa, Embedded Software Development with eCos. Prentice-Hall,
2002.

[4] VxWorks Kernel Programmer’s Guide, 6.2, Wind River Systems, Inc.,
2005.

[5] “Airlines Electronic Engineering Committee (AEEC), design guidance
for integrated modular avionics (ARINC specification 651),” ARINC,
Inc., 1991.

[6] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms and assurance,” SRI International, California, USA, NASA
Contractor Report CR-1999-209347, Jun. 1999.

[7] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Windsor, “ARINC
653 interface in RTEMS,” in Proceedings of Data Systems in Aerospace
(DASIA’07), Naples, Italy, Jun. 2007.

[8] N. Diniz and J. Rufino, “ARINC 653 in space,” in Proceedings of Data
Systems in Aerospace (DASIA’05), Edinburgh, Scotland, Jun. 2005.

[9] L. Kinnan, J. Wlad, and P. Rogers, “Porting applications to an ARINC
653 compliant IMA platform using VxWorks as an example,” in Pro-
ceedings of The 23rd Digital Avionics Systems Conference (DASC 04),
vol. 2, Oct. 2004.

[10] L. Kinnan, “Application migration from Linux prototype to deployable
IMA platform using ARINC 653 and Open GL,” in Proceedings of The
26th Digital Avionics Systems Conference (DASC 07), Oct. 2007.

[11] V. Yodaiken and M. Barabanov, “A real-time Linux,” in Proceedings
of the Linux Applications Development and Deployment Conference
(USELINUX), Jan. 1997.

[12] G. Racciu and P. Mantegazza, RTAI 3.4 User Manual, rev. 0.3, Oct.
2006.

[13] P. Braga, L. Henriques, B. Carvalho, P. Chevalley, and M. Zulianello,
“xLuna - demonstrator on ESA Mars Rover,” in Data Systems in
Aerospace (DASIA’08), Palma de Mallorca, Spain, May 2008.

[14] S. Oikawa and R. Rajkumar, “Portable RK: A portable resource kernel
for guaranteed and enforced timing behavior,” in Proceedings of the Fifth
IEEE Real-Time Technology and Applications Symposium (RTAS’99).
Washington, DC, USA: IEEE Computer Society, 1999, p. 111.

[15] J. Aas, “Understanding the Linux 2.6.8.1 CPU scheduler,” Silicon
Graphics International (SGI), Feb. 2005.

[16] D. Hart, J. Stultz, and T. Ts’o, “Real-time Linux in real time,” IBM
Systems Journal, vol. 47, no. 2, pp. 207–220, Apr.–Jun. 2008.

[17] D. Abbott, Linux for Embedded and Real-time Applications, Second
Edition (Embedded Technology). Newnes, 2006.

[18] C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[19] IEC 60027-2: Letter symbols to be used in electrical technology – Part
2: telecommunications and electronics, IEC Std., Aug. 2005.

[20] GNU C library. [Online]. Available: http://www.gnu.org/software/libc/
[21] uClibc. [Online]. Available: http://www.uclibc.org/
[22] The newlib homepage. [Online]. Available: http://sourceware.org/newlib/
[23] diet libc - a libc optimized for small size. [Online]. Available:

http://www.fefe.de/dietlibc/
[24] BusyBox. [Online]. Available: http://www.busybox.net/
[25] Buildroot. [Online]. Available: http://buildroot.uclibc.org/
[26] T. Nakajima, M. Sugaya, and S. Oikawa, “Operating Systems For

Building Robust Embedded Systems,” in Proceedings of The 10th IEEE
International Workshop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS05). IEEE, Feb. 2005.

[27] R. Obermaisser and B. Leiner, “Temporal and spatial partitioning of a
time-triggered operating system based on real-time Linux,” 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), pp. 429–435, May 2008.

[28] M. Coutinho, “Integração modular de dispositivos de entrada/saı́da em
plataformas de controlo distribuı́do,” M.Sc. thesis, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Dec. 2007, in Portuguese.

[29] M. Coutinho, J. Rufino, and C. Almeida, “Response time analysis
of asynchronous periodic and sporadic tasks scheduled by a fixed-
priority preemptive algorithm,” in Proceedings of The 20th Euromicro
Conference on Real-Time Systems (ECRTS 08), Prague, Czech Republic,
Jul. 2008.

[30] J. Rufino and J. Craveiro, “Robust partitioning and composability in
ARINC 653 conformant real-time operating systems,” Presented at the
1st INTERAC Research Network Plenary Workshop, Braga, Portugal,
Jul. 2008, Fast Abstract.

