
Response Time Analysis of Asynchronous Periodic and Sporadic Tasks
Scheduled by a Fixed-Priority Preemptive Algorithm

Manuel Coutinho
EDISOFT∗ / IST-UTL†

manuel.coutinho@edisoft.pt

José Rufino
FCUL‡

ruf@di.fc.ul.pt

Carlos Almeida
IST-UTL

cra@comp.ist.utl.pt

Abstract

Real-time systems usually consist of a set of periodic
and sporadic tasks. Periodic tasks can be divided into two
classes: synchronous and asynchronous. The first type does
not define the task first release, contrary to the second.
Hence, synchronous periodic tasks are assumed to be re-
leased at the worst instant: the critical instant. The schedu-
lability test is reduced to check a single execution of the
task under analysis. The integration of sporadic tasks is
also straightforward: they are treated as a periodic task
with maximum arrival frequency. On the other hand, asyn-
chronous periodic tasks require a test for each release in
the hyperperiod and the integration of sporadic tasks is not
trivial: the worst release instant is unknown a priori. How-
ever, they do not assume that the tasks are released at the
worst instant.

This paper presents a new schedulability analysis
method based on the Response Time Analysis (RTA) to de-
termine the worst response time of both asynchronous peri-
odic and sporadic tasks, scheduled by a fixed-priority pre-
emptive algorithm with general deadlines. It also presents
another method that enables the introduction of a user con-
figurable degree of pessimism, reducing the hyperperiod de-
pendency.

1. Introduction

Traditionally, real-time system designers choose to im-
plement both periodic and sporadic tasks due to their deter-

∗Rua Quinta dos Medronheiros - Lazarim, Apartado 382, 2826-801 Caparica,
Portugal. Tel: +351-21-2945900 - Fax: +351-21-2945999.

†Instituto Superior Técnico - Universidade Técnica de Lisboa, Avenida Rovisco
Pais, 1049-001 Lisboa, Portugal. Tel: +351-21-8418397 - Fax: +351-21-8417499.
This work was supported by EU and FCT, through Project POSC/EIA/56041/2004
(DARIO) WWW Page - http://pandora.ist.utl.pt/projects/dario.

‡Faculdade de Ciências da Universidade de Lisboa, Campo Grande - Bloco
C8, 1749-016 Lisboa, Portugal. Tel: +351-21-7500254 - Fax: +351-21-7500084.
This work was supported by EU and FCT, through Project POSC/EIA/56041/2004
(DARIO) and through the FCT Multiannual Funding Programme. This work was
partially motivated by the research results of Project AIR, supported by ESA (Euro-
pean Space Agency) through the ITI program, ESTEC Contract 19912/06/NL/JD.

minism and responsiveness. Periodic tasks are used typi-
cally for process control (e.g. attitude control in space sys-
tems) whereas sporadic tasks provide very fast responses to
external events (e.g. airbag in automotive applications).

Two consecutive releases of a periodic task are separated
by a well-known fixed time interval: the task period. On
the other hand, sporadic tasks have a more non deterministic
behaviour: two consecutive releases are separated by a well-
known minimum time interval.

Periodic tasks can be divided into two main classes: syn-
chronous and asynchronous1. This difference relates to def-
inition (or lack of) of the first release instant. Sporadic tasks
usually react to external events so there is little advantage in
specifying their first release time.

The first release instant is undefined in synchronous pe-
riodic tasks. Hence, the schedulability analysis has to con-
sider the worst possible release: the critical instant. There-
fore, only one release has to be studied, allowing pseudo-
polynomial tests to produce necessary and sufficient condi-
tions [11, 12]. The integration of sporadic tasks with syn-
chronous periodic tasks is straightforward: they are treated
as synchronous periodic tasks, released at a critical instant
and with period equal to its minimum inter-arrival time
(maximum frequency).

On the other hand, the first release instant is defined in
asynchronous periodic tasks. These are more difficult to
analyze since the worst release instant is unknown a priori.
The determination of sufficient and necessary schedulabil-
ity conditions of asynchronous periodic tasks in a preemp-
tive fixed-priority scheduling algorithm has been shown to
be co-NP-complete [13]. In fact, an analysis through the
task hyperperiod is required to determine that all releases
meet their deadline [1]. Since the hyperperiod increases ex-
ponentially with the number of tasks, specially those with
prime periods, this analysis can be heavy, even with few
tasks. Furthermore, sporadic tasks are more difficult to an-
alyze since the worst release instant is also unknown.

1Asynchronous periodic tasks are sometimes referred as concrete peri-
odic tasks in the domain of non-preemptive schedulers [10].

However, asynchronous periodic tasks have an impor-
tant advantage over the synchronous counterpart: they are
not released at the critical instant. Hence, this generic
methodology may be used to accurately represent real set-
tings [16, 19, 18]. In addition, there can co-exist tasks that
never interfere with each other, even with different periods.
The use of asynchronous an periodic task model allows an
increase of CPU usage and can guarantee higher system re-
sponsiveness thus avoiding the costs of buying and certify-
ing faster equipment [16].

The hyperperiod dependency is also present in the time-
triggered architecture, which to some degree demonstrates
the practicability of this type of analysis. However, even
though these systems generally allow a higher CPU usage,
they have a low responsiveness to external events.

This paper proposes a method to analyze the schedu-
lability of systems comprising asynchronous periodic and
sporadic tasks with general deadlines (deadlines less than
or equal to the period), scheduled by a fixed-priority pre-
emptive algorithm. As far as our knowledge can say, the
schedulability analysis of sporadic tasks together with asyn-
chronous periodic tasks has not been addressed yet in the lit-
erature. The proposed methods follow the Response Time
Analysis (RTA) approach, determining the response times
of all periodic releases throughout the system hyperperiod.
The determination of the worst response times also allows
a greater insight to the amount of jitter associated to a pe-
riodic task and the number of missed deadlines (assuming
the response time is larger than the deadline but smaller than
the period). In control systems this is useful because, if not
carefully bounded, the jitter can potentially degrade the sys-
tem performance [17].

The worst release instant caused by the asynchronous
task set, the asynchronous critical instant, is unknown a
priori. This paper presents a method that determines a set
of candidates to the asynchronous critical instant to analyze
the schedulability of sporadic tasks.

Since many real-time embedded systems have large
designing/implementing periods, the heavy schedulability
analysis required is still manageable in most systems, as
seen in the time-triggered architecture usage cases. How-
ever, if the hyperperiod is too large, another method is pre-
sented that produces a faster result at the expense of the
introduction of a variable degree of pessimism.

2. Related work

The schedulability analysis has commonly used the crit-
ical instant as a means to produce very fast results. In fact,
in systems where the release instants are not known a priori
derive necessary and sufficient conditions, as the RTA [11].
This analysis gives the response time of a given task render-
ing the schedulability test trivial: the response time must be

smaller than the deadline.
Attempts to remove the critical instant assumption by

defining release instants for periodic tasks have produced
some results. Perhaps the most widely known result is pro-
duced by the offset system model [3, 15, 4, 20, 14]. In this
model, there is a set of periodic transactions, each one com-
posed by a set of tasks (with the same period as the transac-
tion and normally related by a precedence order). The tasks
are released at a fixed time interval after the transaction has
begun but the release of the transaction is unknown. As a
consequence, tasks inside the same transaction have little or
no interference with one another. However, tasks in differ-
ent transactions are analyzed assuming they are released at
the worst instant. Furthermore, tasks inside a transaction
must share the same period. As a consequence, the hyper-
period is typically small (smaller number of tasks with dif-
ferent periods). Note also that this offset analysis can be
made a particular case of asynchronous periodic tasks with
the additional definition of the release instants of the trans-
actions.

Regarding asynchronous periodic tasks, schedulability
analysis has been addressed in [1] and in [6, 8]. In [1] it
is presented an optimum priority assignment algorithm for
fixed-priority schedulers with O(n2) complexity. This algo-
rithm requires a sufficient and necessary schedulability test
(also known as a feasibility test) which is also presented.
However, this analysis determines the interference of each
individual higher priority task release, which requires a sort-
ing procedure and a high number of iterations. In [5] the au-
thor treats both asynchronous periodic and sporadic tasks,
but only provides a sufficient test when considering spo-
radic tasks.

Both [6] and [8] determine the response time in dynamic
priority schedulers with arbitrary deadlines (deadlines can
be larger than the period), whereas fixed-priority schedul-
ing is briefly addressed in [7]. However, this work can be
simplified when applied to fixed-priority systems.

Other work has addressed offset-free systems, character-
ized by allowing the scheduler to choose the best (first) re-
lease instants of the periodic tasks. In [9] near-optimal pri-
ority and release assignments are produced using a heuristic
and using the schedulability test described in [1, 2].

Fixed-priority non-preemptive schedulers have been
considered in [10], where it is demonstrated that the com-
plexity of the schedulability analysis is NP-hard in the
strong sense, but it did not provide a schedulability test.

3. System Model

The system model considered in this paper integrates
both periodic and sporadic tasks, scheduled by a fixed-
priority preemptive algorithm. It is assumed that the tasks
are independent, co-exist in a single processor and the con-

text switching overhead is null. Each task has a unique pri-
ority but periodic and sporadic can intertwine their relative
priorities, that is, the priority of a given sporadic task can be
in between the priorities of two other periodic tasks.

Concerning only the periodic task set, it is commonly re-
ferred as an asynchronous task set with general deadlines.
In this model, the periodic tasks are defined by the param-
eters Γi = {ci,Ti,ri,Di} where ci represents the Worst Case
Execution Time (WCET), Ti the task period, ri the release
time of the task and Di the relative deadline from the task re-
lease. The condition of general deadlines specifies that the
deadline is smaller than or equal to the period. Hence, the
parameters are conditioned to 0 ≤ ci ≤ Di ≤ Ti and 0 ≤ ri.
A job is a particular execution of a periodic task.

Similarly, the sporadic task set is characterized by τm =
{em,MITm,Hm} where em is the WCET, MITm is the Mini-
mum Inter-Arrival Time between consecutive task releases
and Hm is the relative deadline from the task release. Sim-
ilarly, the deadline is inferior to the minimum inter-arrival
time, hence 0 ≤ em ≤ Hm ≤ MITm.

Both tasks sets are ordered by increasing priority, that is,
task Γi has a higher priority than task Γi+1 and τm has also
a higher priority than τm+1.

Additional Definitions

• Ri - Response time (instant) of the synchronous peri-
odic counterpart of the asynchronous periodic task Γi

• lri = ri + l Ti - Release instant of the lth job of the asyn-
chronous periodic task Γi

• lRi - Response instant of the lth job of the asynchronous
periodic task Γi

• Rm - Response instant of the sporadic task τm

• lRi −l ri - Response time of the lth job of an asyn-
chronous periodic task Γi

• Λi - Hyperperiod of the asynchronous periodic task Γi

4. Response Time Analysis for Synchronous
Tasks

The Response Time Analysis (RTA) for synchronous pe-
riodic tasks and sporadic tasks is a well-known fast method
that produces necessary and sufficient schedulability condi-
tions [11]. This section presents the essential details of how
this method works, since it is used as a starting point of the
analysis described latter on.

In synchronous periodic tasks, the worst instant where
the tasks can be released is at a critical instant: all higher
priority tasks start at the same instant. Hence, the response
time of the synchronous counterpart of Γi, given by Ri, is
the solution of the equation

Figure 1. Iterations of the Response Time
Calculation, Equation (2)

Ri = ci +
i−1

∑
j=1

⌈
Ri

Tj

⌉
c j (1)

Due to the non-linear ceiling operator �x�, this equation
can not be easily solved from direct analysis. Instead, an
iterative fixed-point method is used to determine its value




R
(0)
i = ci

R
(n+1)
i = ci +

i−1

∑
j=1

⌈
R

(n)
i

Tj

⌉
c j

(2)

The basic philosophy behind this iterative method is
to incrementally increase the response time based on the
higher priority task demanded workload. Each iteration
gives the instant where the workload request has been ful-
filled. However, between the last iteration and the present
one, new workload may have been demanded. Hence, the
algorithm continues to update the new workload demanded
until it stops increasing. At this point the method halts,

where R
(n+1)
i = R

(n)
i = Ri. The schedulability test is reduced

to check if Ri ≤ Di. If so, then the task is schedulable. Fig-
ure 1 shows an example of how the iterations progress until
the response time is found.

The integration of sporadic tasks is straightforward
within this model: they are treated as periodic tasks, re-
leased at the critical instant and with period equal to their
MIT. As such, there is little difference analysing syn-
chronous periodic or sporadic tasks.

5. Response Time Analysis of Asynchronous
Periodic Tasks

This section provides a new method to determine the re-
sponse time of all asynchronous periodic jobs. For simplic-
ity of exposition, sporadic tasks are not yet considered.

The introduction of the release instant of periodic tasks
has to be firstly reflected into the workload function. Hence,
the workload requested in the interval [0, t[by the tasks
Γ1, . . . ,Γi is given by

wi(t) =
i

∑
j=1

⌈
t − r j

Tj

⌉
0

c j (3)

where the �x�0 operator gives the max{0,�x�}. This opera-
tor is introduced to reflect that the number of times a task is
invoked cannot be lower than zero.

The response instant of an asynchronous periodic task
released at lri is obtained by adding its execution time,
ci, and the interference from the higher priority tasks,
Ii−1(lri,

lRi), to the instant it was released, lri

lRi =lri + ci + Ii−1(lri,
lRi) (4)

The interference from higher priority tasks is the only
unknown element. This interference can be divided into
the interference remaining at lri, designated by Ib

i−1(
lri), and

the interference that arises after the task release until its re-
sponse instant, Ia

i−1(
lri,

lRi).

Ii−1(lri,
lRi) = Ib

i−1(
lri)+ Ia

i−1(
lri,

lRi) (5)

The term Ib
i−1(

lri) reflects the interference from higher
priority tasks requested before the release instant. In [1],
this term is calculated by searching backwards all the higher
priority task releases in the interval [l−1ri + Di,

lri[plus the
workload remaining at l−1ri + Di. This set of task releases
is then sorted chronologically and individually analyzed.

Instead, our approach requires the determination of the
last idle instant before lri, designated by Li−1(lri). This last
idle instant is defined as the last instant where all higher
priority tasks previously demanded workload has been ful-
filled. Hence, from Li−1(lri) to lri the system is processing
the higher priority tasks. The remaining interference is eas-
ily found by subtracting the workload demanded with the
workload processed by the higher priority tasks in the inter-
val [Li−1(lri),l ri[.

Ib
i−1(

lri) = wi−1(lri)−wi−1(Li−1(lri))︸ ︷︷ ︸
workload demanded

− (lri −Li−1(lri))︸ ︷︷ ︸
workload processed

(6)
As will be shown later on, the calculation of the last idle

instant follows a method similar to the RTA, so it does not
analyze each higher priority task prior release individually,
nor does it require a sorting operation.

The term Ia
i−1(

lri,
lRi) accounts for the total workload re-

quest by the higher priority tasks after the release, that is,
in the interval [lri,

lRi[. In [1] the author determines all the
higher priority tasks releases in the interval [lri,

l ri + Di[.
This set of releases is ordered chronologically and indi-
vidually analyzed. The interference found at lri + Di is
used to calculate the remaining interference for the next job,
Ib
i−1(

l+1ri), as previously stated.

Our approach determines the interference after the re-
lease until the response instant, corresponding to the inter-
val [lri,

lRi[and it is given by

Ia
i−1(

lri,
l Ri) = wi−1(lRi)−wi−1(lri) (7)

Joining equations (4), (5), (6) and (7), the response in-
stant is given by

lRi = Li−1

(
lri

)
+ ci + wi−1

(
lRi

)
−wi−1

(
Li−1

(
lri

))
(8)

The smallest solution (larger than lri) of this equation
gives the response instant of a task released at l ri. The
equation starts from the last idle instant, as opposed to lri

in equation (4). It then adds the task execution time to the
workload demanded by the higher priority tasks in the in-
terval [Li−1(lri),lRi[.

This equation has to be verified for all jobs of Γi released
inside the hyperperiod. In [1] the hyperperiod is proven to
correspond to the interval

[max(r1, ...,ri),max(r1, ...,ri)+ LCM(T1, ...,Ti)[

where the LCM function corresponds to the Least Com-
mon Multiple. The hyperperiod is the minimum interval
in which the task set starts repeating itself. Note that it
starts after a initial transient phase. This initial transient
phase does not need to be analyzed since there is less inter-
ference than the worst case (not all tasks have been made
active). Hence, the hyperperiod can start at any instant after
max(r1, ...,ri) as long as it maintains the same length. Due
to the sporadic task interference, we begin the hyperperiod
at Si = max(r1, ...,ri)+ Ti

Λi = [Si,Si + LCM(T1, ...,Ti)[(9)

This new interval has the same length and starts after the
transient phase, so it maintains the same properties. Sec-
tion 6.2 explains the reasons for the change made to the
hyperperiod. In short, it is necessary to analyze the interval
]l−1ri,

l ri] to determine lRi, so this interval must not contain
a transient phase.

The minimum and maximum l such that lri ∈Λi are given
by

lmin
i =

⌈
Si−ri

Ti

⌉
lmax
i =

⌈
Si+LCM(T1,...,Ti)−ri

Ti

⌉
−1

The schedulability analysis can be summarized in the
condition

{ ∀l:lri∈Λi
lRi −lri ≤ Di , Γi is schedulable

∃l:lri∈Λi
lRi −lri > Di , Γi is unschedulable

(10)

Figure 2. Extended Workload Request

5.1. Last Idle Instant Calculation

The response time analysis presented requires the deter-
mination of the last idle instant of the higher priority pe-
riodic tasks for a given time, Li(t). Even though previous
work in [1] analyzes the small interval [l−1ri +Di,

lri[to de-
termine the remaining workload at lri, it also has to add
the remaining workload at l−1ri + Di. So, in essense, it has
to analyze the whole time sequence since the beggining of
time to determine the remaining workload at lri. In fact,
all previous work regarding asynchronous systems required
determining the schedule since the beggining of time [1, 5].
Our method also has to analyze the interval [0,t[but, instead
of searching every individual higher priority task release as
[1], our approach follows a method closely related with the
fast iterations of the RTA algorithm.

Our aim is to extend the workload function with the
knowledge of the idle periods: wext

i (t), Figure 2. When the
system is in an idle state (at the current priority level) the
extended workload is equal to t (instant t1 in Figure 2), so
wext

i (t)− t gives the remaining workload at each instant.
By tracking the extended workload function, the idle pe-

riods can be determined and the last idle instant found. In
summary, when the system is non idle (computing), the
method advances in time similarly to the RTA method;
when it is in idle, a new function, ρi(t), determines the next
computing instant.

The transition between an idle instant to a computing in-
stant requires the determination of the workload requested
at a particular instant. To do this, the auxiliary function
wi(t) is introduced

wi(t) =
i

∑
j=1

⌊
1 +

t − r j

Tj

⌋
0

c j (11)

where the non-linear operator �x	 denotes the floor function
and �x	0 = max{0,�x	}. The function wi(t) gives the work-
load request in the interval [0, t]. Notice that this interval is
closed at both ends. Hence, the workload requested at t can
be given by wi(t)−wi(t).

The method advances through the computing periods
through a fixed-point method. Let ϒ(t) be the total idle
time until a given instant. At each iteration, the fixed-point
method gives the instant where the workload demanded has
been fulfilled. Since from the last iteration to the present
one new workload may have been demanded, the method
continues to update the new workload until it stops increas-
ing

w(n+1)
i =

i

∑
j=1

⌈
w(n)

i − r j

Tj

⌉
0

c j + ϒ(t) (12)

When w(n+1)
i = w(n)

i the method stops and w(n)
i is equal

to the instant where the computing period has ended. The
diagram in Figure 4 shows how this iterative method finds
the next point computing instant.

After finding the instant where the workload as been ful-
filled, which also corresponds to an idle instant, the function
ρi(t) gives the next computing instant, which corresponds to
the closest task release

ρi(t) = min
j=1...i

(⌈
t − r j

Tj

⌉
0

Tj + r j

)
(13)

Being t the last computing instant of a computing pe-
riod, the difference between ρi(t) and t gives the next idle
period. By sequentially adding these idle periods to the
workload request function we get the extended workload
function, Figure 2.

wext
i (t) = wi(t)+ Li(t)−wi(Li(t))︸ ︷︷ ︸

total idle time

(14)

An iterative method is thus built by sequentially de-
termining the computing and idle periods. The transi-
tion from an idle to a computing period is accomplished
by adding the workload request at that instant, given by
wi(ρi(t))−wi(ρi(t)). The pseudo-code that implements this
method is illustrated in Figure 3.

An example of how this pseudo-code works is shown on
Figure 4 . As illustrated, the algorithm adds to the workload
the idle time periods so as to follow the extended workload
request function.

function Li(t){
if(i = 0) return t; // there are no higher priority tasks
last idle instant = 0;
total idle time = 0;
iterator = 0;
while(true) {

last iterator = iterator;
iterator = wi(iterator)+ total idle time;
if(iterator > t)

return last idle instant;
if(last iterator = iterator) { // arrived at an idle instant

if(iterator ≤ t ≤ ρi (iterator))
return t;

last idle instant = ρi (iterator);
total idle time += ρi (iterator)− iterator;
iterator = ρi(iterator)+wi (ρi(iterator))−wi (ρi(iterator));

} } }

Figure 3. Pseudo-code to determine Li(t)

5.2. Response Instant Calculation

Like the classic RTA iterative method, the response in-
stants can also be found iteratively. Hence, the response in-
stants of Γi, lRi, are determined using the fixed-point method

{
lR(0)

i = ci +lri
lR(n+1)

i = ci + wi−1(lR(n)
i)+ Li−1(lri)−wi−1(Li−1(lri))

When lR(n+1)
i =lR(n)

i the response instant has been found.

5.3. Application Example

An example of how this method can be applied is pre-
sented in Table 1 and the first time sequences are shown in
Figure 5. The Example 1 has a 98,67% CPU usage and
∑ ci

Di
= 282,54%. Notice also that the larger hyperperiod,

Λ10, is quite large, above 60 million time units. This was
made to show that even for very large hyperperiods, the
amount of time required by the analysis is still managable.
The schedulability method presented thus far has very de-
manding processing times2, so the analysis followed an im-
proved method, discussed in Section 7.1. The Table 1 com-
pares the number of iterations of the presented method with
the one described in [1]3. As depicted, the number of itera-
tions required is smaller by up to 95% and the performance
gain increases as the hyperperiod becames larger.

From Table 1 we can see that the response time calcu-
lated assuming a critical instant, Ri, renders four tasks un-
schedulable: Γ2,6,7,8. Note in particular that Γ2 is deemed

2A rough estimation gives more than 14000 hours to analyze Γ10.
3This result may vary somewhat with the implementation since the al-

gorithm in [1] requires a sorting procedure.

Figure 4. Iterations of the function Li(t)

Figure 5. Scheduling Example 1 for the tasks
Γ1, . . . ,Γ8. The symbol ↑ denotes the task
release whereas ↓ denotes the response in-
stant

schedulable from Figure 5. In fact, this task never suffers
interference from the higher priority task Γ1. For the tasks
Γ7,8, we show that their response time is always inferior to
the deadline by analysing every job in the hyperperiod: Fig-
ure 6. Following a similar approach, task Γ6 is also deemed
schedulable. Note that to determine if the task is schedula-
ble the determination of Ri (or other, even faster schedu-
lability test) can be sufficient in most cases. There are,
however, scenarios where the classic schedulability analysis
gives too pessimisitic results. This analysis can be taken in
these situations and when there is enough time.

This method provides the worst response time for all
jobs and therefore allows a better view as to how much re-
sponse jitter is introduced. For example, as seen on Fig-
ure 5, Γ2 never suffers the interference of Γ1. Hence its
jitter is only bounded by its minimum and maximum exe-
cution time, [c−2 ,c2], making it an almost “jitter-free” task.

System Parameters Schedulability Results

Γi ci Ti ri Di Ri max
(

lRi −lri
)

LCM(T1, . . . ,Ti) Analysis Time (s) # Iterations Improvement over [1]
Γ1 2 10 17 2 2 2 10 0.015 2 0%
Γ2 1 15 0 2 3 1 30 0.047 17 12%
Γ3 5 22 1 10 8 8 330 0.062 173 20%
Γ4 5 33 6 20 15 15 330 0.078 176 43%
Γ5 5 42 1 42 28 21 2 310 0.172 1 145 69%
Γ6 7 57 19 47 58 44 43 890 2.094 20 654 83%
Γ7 2 90 34 90 98 89 131 670 5.406 48 387 83%
Γ8 3 120 36 120 148 101 526 680 19.78 181 318 85%
Γ9 17 345 0 340 329 329 12 113 640 305.9 3 754 897 88%
Γ10 2 700 0 700 660 622 60 568 200 1196 9 794 992 95%

Table 1. Parameters of Example 1. The schedulability analysis followed the improved method de-
scribed in Section 7.1, Figure 13

(a) (b) (c)

Figure 6. Response time of each job in the hyperperiod for the tasks: (a) Γ7; (b) Γ8; (c) Γ8 with D8 = 90

In a more general case, the determination of the worst jit-
ter requires two analysis: one with the minimum execution
times, c−1 , . . . ,c−i ; the other with the worst execution times,
c1, . . . ,ci. The interval between the best response time of
the first case with the worst response time of the latter gives
the largest jitter. If, for example, c−i = ci, then Figure 6 can
tell us the jitter of tasks Γ7 and Γ8.

This analysis also covers systems that support occasional
missed deadlines. For example, by lowering D8 to 90 time
units, there are some jobs that do not fulfill the deadline, as
depicted in Figure 6. Note however, that since the responses
are all lower than T8, if one job misses its deadline, the next
job will not suffer any temporal interference. If a job has a
response time higher than its period, than this analysis does
not suffice and a model extension (to incorporate arbitrary
deadlines, for example) is needed.

Since the knowledge of Li−1(l ri) is required to deter-
mine the response time for each job inside a hyperpe-
riod, the overall complexity to determine if a given task
Γi is schedulable is O(E LCM(T1, ...,Ti)2), where E is the
average number of steps required to calculate the next

idle instant since the previous one. The algorithm is
dependent on the quadratic power of the LCM because,
when calculating Li−1(lri), the method starts from the be-
ginning for every job. For a LCM(T1, ...,Ti)/Ti number
of jobs, the number of total iterations required is E 1 +
E 2 + ... + E LCM(T1, ...,Ti)/Ti = O(E LCM(T1, ...,Ti)2).
In Section 8.1 we will describe how to make this
O(E LCM(T1, ...,Ti)).

6. Integration of Sporadic Tasks

One major advantage of using event-driven systems with
a combination of periodic and sporadic tasks comes from
the high responsiveness and low resource consumption.
Suppose a high priority sporadic task with a very low dead-
line (Hi) but with a very large MIT: the sporadic task will
execute seldomly having a low impact on the remaining
tasks schedulability. A pure time-triggered system, on the
other hand, would need a high frequency polling task to pro-
vide such responsiveness.

The synchronous approach assumes that all tasks,

whether periodic or sporadic, are released at the same in-
stant: critical instant. However asynchronous periodic tasks
are released at fixed instants which may not coincide with
the critical instant. Therefore it is necessary to know the
worst possible instant where a sporadic task can be released:
asynchronous critical instant.

It is also necessary to account for the interference pro-
duced by the sporadic tasks. Hence, assuming that all spo-
radic tasks are released at t = 0, the workload demanded by
the tasks τ1, . . . ,τm, given by ωm(t), is equal to

ωm(t) =
m

∑
k=1

⌈
t

MITk

⌉
0

ek (15)

If the sporadic tasks are released at t0 then their workload
function is ωm(t − t0). As will be shown latter on, the worst
instant comes when all sporadic tasks are released at the
same instant.

6.1. Asynchronous Critical Instant

This section presents a method to determine the asyn-
chronous critical instant, κi, imposed by the higher priority
asynchronous periodic tasks. This instant corresponds to
the release instant where low priority sporadic tasks are re-
leased to produce the worst response time.

Observing Figure 7, which illustrates the function
wext

i (t)− t, we conclude that the asynchronous critical in-
stant can only be in the beginning of the computing peri-
ods/end of the idle periods. This can easily be proved by
assuming the contrary: if the asynchronous critical instant
is in the idle period before, then the response instant will
also be sooner by at least the same amount, Figure 7; if it
is in the computing period after, then the response instant is
equal but, since it started later, the response time is smaller,
Figure 7. Hence, we need only concern with the start of the
computing periods because these will give the candidates
for the asynchronous critical instant. The worst release in-
stant for the lower priority sporadic tasks is therefore one of
these candidates.

To determine the candidates for the asynchronous critical
instant we need a method to determine the next idle instant,
ϕi(t). This new method is very similar to the iterations of
the Li(t) algorithm. As specified in Figure 8, the function
ϕi(t) receives a work instant. This is the first work instant
of the computing period. The first iteration adds the work
demanded at that instant. The following iterations are very
similar to the other methods, adding at each iteration the
new workload demanded. An example of the ϕi(t) itera-
tions is shown in Figure 9.

Figure 8 also describes a method, κi(tmin,tmax), that cap-
tures all candidates inside the interval]tmin,tmax]. This
method is either calculating the next work instant, using

Figure 7. Asynchronous Critical Instants
Candidates

ρi(t), or the next idle instant, using ϕi(t). When the work
instant found is greater than tmax the method stops.

The complexity of determining the asynchronous critical
instant candidates in Λi is similar to the determination of the
last idle instant: O(E LCM(T1, . . . ,Ti)).

6.2. Response Time Analysis of Asyn-
chronous Periodic Tasks

The worst interference that sporadic tasks can produce
to the lower priority periodic tasks can be determined with
knowledge of the asynchronous critical instant candidates.

Suppose a periodic job released at lri and that τK is the
lowest priority sporadic task with higher priority than Γi.
In Figure 10 is illustrated the higher priority periodic tasks
remaining workload at each instant, wext

i (t)− t. There are

four candidate instants between l−1ri and l ri: κ(1)
i , . . . ,κ(4)

i .
From Figure 10 it is clear that the worst interference that

high priority sporadic tasks induce into the low priority pe-
riodic tasks happens when they are released at the critical
instant candidates. If the sporadic tasks are released earlier,
then they will be executed (since the system is idle). If they
are released after the candidate, then the interval where they
can cause interference is smaller.

The worst release instant in Figure 10 is κ(2)
i . This re-

lease instant removes the idle period between κ(2)
i and lri,

making one single computation period. In fact, if there are
idle periods between the release of the sporadic tasks and
lri then that cannot be the worst release instant since all the
workload has been fulfilled at one instant and hence will not
be added to the next computing period (take example of the

release at κ(1)
i in Figure 10).

Since from the worst release instant to l ri there cannot
exist idle periods, if the worst release is before l−1ri then the
l−1 job could not be executed and would miss its deadline.
Hence, assuming that all previous jobs fulfill their deadline,

function κi(tmin,tmax){
next work instant = Li(tmin);
work instants = {};
while(true) {

next idle instant = ϕi(next work instant);
next work instant = ρi(next idle instant);
if(next work instant > tmax)

return work instants;
work instants = work instants∪{next work instant};

} }
function ϕi(work instant){ //returns the next idle instant

total idle time = work instant −wi(work instant);
iterator = work instant +wi(work instant)−wi(work instant);
while(true) {

last iterator = iterator;
iterator = wi(iterator)+ total idle time;
if(iterator = last iterator)

return iterator;
} }

Figure 8. Pseudo-code to determine all the
candidates of the asynchronous critical in-
stant in the interval]tmin,tmax]

Figure 9. Examples of the ϕi(t) iterations

the candidates to the worst release instant are in the interval
]l−1ri,

l ri]. If there are no critical instant candidates, then the
task is not schedulable since during that interval the system
never completed its workload and hence the previous job
did not fullfill its deadline.

The interval]l−1ri,
l ri] must not be inside the initial tran-

sient phase. So the hyperperiod must start Ti after the
initial phase has ended. Hence the need to make Si =
max(r1, ...,ri) + Ti in Equation (9). This change in the
hyperperiod does not affect significantly the analysis time
since the LCM is still by far the main factor.

Since the idle periods from the worst release instant, κi,
to l ri are now occupied processing the higher priority tasks,
these have to be subtracted when calculating the response
instant. The total idle time from κi to l ri is given by

[Li−1(l ri)−wi−1(Li−1(l ri))]︸ ︷︷ ︸
total idle time until l ri

− [Li−1(κi)−wi−1(Li−1(κi))]︸ ︷︷ ︸
total idle time until κi

Since at κi the higher priority periodic tasks are idle, then
Li−1(κi)) = κi. The response instant of an asynchronous pe-
riodic task is found by adding to equation (8) the workload

Figure 10. Analysis of the candidates to the
worst sporadic release

from the higher priority sporadic tasks and subtracting the
total idle time

lRi = κi + ci + wi−1(lRi)−wi−1(κi)+ ωK(lRi −κi) (16)

where the smallest solution (larger than lri) corresponds to
the response instant. This equation can be solved using the

fixed-point method with lR(0)
i =l ri + ci. This equation has

to be solved for every κi ∈]l−1ri,
l ri] and the worst response

instant found is used in expression (10) to determine if Γi

is schedulable. Note that if a particular κi is not the worst
instant and it does not completely remove the idle periods,
then the corresponding response instant calculated will be
smaller than it should be (because we are subtracting all the
idle periods), but since this is not the worst case it will not
be considered in the final schedulability test.

If there are no higher priority sporadic tasks then the only
κi candidate that does not have any idle periods between

κi and lri is Li−1(l ri) (κ(4)
i in Figure 10), so equation (16)

becomes equivalent to equation (8).

6.3. Response Time Analysis of Sporadic
Tasks

To determine the worst possible response time of a spo-
radic task we have to consider all asynchronous critical in-

stant candidates. Consider Γi to be the lowest priority peri-
odic task with higher priority than τm. The worst response
instant of a sporadic job is found when all higher priority
sporadic tasks are released at the same asynchronous criti-
cal candidate. Hence, it is the smallest solution (larger than
κi) of

Rm = κi + em + wi(Rm)−wi(κi)+ ωm−1(Rm −κi) (17)

Likewise, this equation can be solved using the fixed-

point method, with R(0)
m = em +κi. The schedulability anal-

ysis can be summarized in the condition

{ ∀κi∈Λi Rm −κi ≤ Hm , τm is schedulable
∃κi∈Λi Rm −κi > Hm , τm is unschedulable

(18)
As an example take the interference given by Γ1, ...,Γ3

(Table 1). The candidates for the asynchronous critical in-
stant are (first 10): 37; 45; 57; 60; 67; 75; 77; 87; 89; 97.
In total, there are 55 candidates in Λ3. The response times
of a sporadic task with e1 = 1 and released at the candidates
instants are respectively: 3; 9; 3; 2; 8; 2; 3; 9; 7; 3. For a
e1 = 10 the response times are: 20; 21; 23; 21; 20; 21; 20;
23; 21; 20. Note that if the task is released at t = 57, for a
e1 = 1 the response time is very low compared to other in-
stants, but when e2 = 10 it has the highest response time.
Therefore all critical instants candidates must be consid-
ered, even if for lower WCET they give very good response
times. This is because for a task with a very low WCET,
then the worst candidate corresponds to the single longest
computation period. But for a task with a large WCET it
can be the longest chain of computing periods with little
idle periods in between.

7. Improving the Response Time Calculation

To speedup the schedulability test of a particular task it is
possible to determine the response time assuming a critical
instant, Ri. If the task is schedulable under this condition
then it is always schedulable, whatever the release time [1].

7.1. Exploiting Last Idle Instant Knowledge

As described earlier, the complexity of determining
the last idle instant for all jobs of a given task Γi is
O(E LCM(T1, ...,Ti)2). The quadratic dependency comes
from the reinitialization of the iterative method to determine
Li(t) for each job. But by keeping track of the last known
idle instant, the algorithm can start from this point instead of
doing the same analysis since the beginning. This reduces
the overall complexity to O(E LCM(T1, ...,Ti)). Since the

function L̃i(last known idle,t){
if(i = 0) return t; // there are no higher priority tasks
last idle instant = last known idle;
total idle time = last known idle−wi(last known idle);
iterator = last known idle;
while(true) {

last iterator = iterator;
iterator = wi(iterator)+ total idle time;
if(iterator > t)

return last idle instant;
if(last iterator = iterator) { // arrived at an idle instant

if(iterator ≤ t ≤ ρi (iterator))
return t;

last idle instant = ρi (iterator);
total idle time += ρi (iterator)− iterator;
iterator = ρi(iterator)+wi (ρi(iterator))−

wi (ρi(iterator));
} } }

Figure 11. Improved pseudo-code to deter-
mine the Li(t) starting from the last known
idle instant

LCM is obviously the limiting factor, this improvement is
very significant.

The Figure 11 illustrates the improved pseudo-code that
determines the last idle instant starting from the last known
idle instant. Note the changes made only in the initialization
phase. Figure 12 describes the improved pseudo-code that
determines κi using the new function L̃i(last, t).

Finally, Figure 13 illustrates the improved pseudo-
code to determine the response instants for the jobs
linitial , . . . , l f inal . Note that the last idle instant is updated af-
ter the maximum known critical instant candidate since, as
previously stated, the critical instant candidates are them-
selves idle instants. If the response time is larger than
the task period, then this analysis cannot determine the re-
sponse instants of the following jobs (since the next job will
have some additional interference) and the method halts.

As an example of the improvement made, the determi-
nation of the response times for the Γ7 jobs took approxi-
mately one hour with the standard method4. With the im-
proved method it took 5 seconds - Table 1. A similar ap-
proach was also taken in [1].

7.2. Handling Large Hyperperiods

The schedulability analysis is rigidly dependent on the
hyperperiod defined by the periodic tasks. For a high num-
ber of tasks, this analysis can be deemed unfeasible, spe-
cially when the periods are co-prime.

This paper introduces an innovative idea to handle large
hyperperiods by allowing some degree of pessimism. In-
stead of considering that all tasks are released at a critical

4Using MatLab under Windows XP on a PIII processor at 1300 MHz.

function κ̃i(tmin,tmax, last idle instant){
next work instant = L̃i(last idle instant,tmin);
work instants = {};
while(true) {

next idle instant = ϕi(next work instant);
next work instant = ρi(next idle instant);
if(next work instant > tmax)

return work instants;
work instants = work instants∪{next work instant};

} }
Figure 12. Improved pseudo-code to deter-
mine κi in the interval]tmin,tmax] using the func-
tion L̃i(last, t)

function R̃i(linitial , lf inal) {
idle = 0; // last known idle instant
for

(
l = linitial ; l ≤ lf inal ; l++

){
lRi =l ri +ci; // smallest possible value of lRi

κi = κ̃i(l−1ri,
l ri, idle);

idle = max(κi); // update last known idle instant

foreach(κ(x)
i ∈ κi){

R =l ri +ci; // initial iteration
do {

last R = R;

R = κ(x)
i +ci +wi−1(R)−wi−1(κ

(x)
i)+ωK(R−κ(x)

i);
if(R > l+1ri)

return “cannot determine response instant”;
} while(last R
= R);
if(R > lRi) // update lRi with largest response instant

lRi = R;
} }
return lmin Ri, ...,

lmaxRi;
}

Figure 13. Improved pseudo-code to de-
termine linitial Ri, . . . ,

l f inal Ri using the function
κ̃i(tmin, tmax, last)

instant, it is possible to allow that only a small portion is
released at pessimistic instants. Hence it is possible to com-
promise between the pessimism induced and the number of
iterations required.

By knowing the asynchronous critical instants imposed
by the periodic tasks, the analysis can encompass a reduced
set of high priority periodic tasks and determine the worst
instants in which lower priority tasks (periodic and spo-
radic) can be released.

For example, suppose a task set of 40 periodic and 40
sporadic tasks. If the hyperperiod defined by the 40 peri-
odic tasks is too large, the system designer determines the
asynchronous critical instants of only the first 20 periodic
tasks. A sufficient test can thus be found by assuming that
all lower priority tasks, periodic and sporadic, are released
at these instants. Note that even though the number of can-

didates can be very large, it is fixed, making the analysis of
the lower priority tasks take relatively the same amount of
time.

As a concrete example take the schedulability analy-
sis of Γ8 in Example 1 (Table 1). The determination of
all candidates of the asynchronous critical instant of the
tasks Γ1, . . . ,Γ7 in Λ7 took 4.28s and the determination
of the response times of Γ8, assuming it was released at
these candidates, took 9.2s (not shown in Table 1). The
worst response time is found when the task is released at
t = 925;49435;97945 and equals to 110. Since the deadline
is 120, this analysis is sufficient to say that Γ8 is schedula-
ble. If the worst response time is larger than the deadline,
then nothing can be concluded.

8. Conclusions

This paper presents an algorithm to analyze the schedu-
lability of asynchronous periodic and sporadic tasks sched-
uled by a fixed-priority preemptive algorithm. The results
presented in this paper can be used to

• Diminish the pessimism induced by the critical instant

• Allow offset relationships

• Determine the worst response time of each job

– analyze response jitter

– account for missed deadlines

• Calculate the asynchronous critical instant

– integrate sporadic tasks

– increase analysis speed

By assuming that the release times are not equal to zero
and hence not considering the critical instant scenario, more
than just one response time calculation is required. The de-
termination of the response times of all jobs under a hy-
perperiod is necessary. This makes the overall computa-
tion time strongly dependent on the LCM of the tasks pe-
riods. Therefore, the proposed methods do not scale well
against the number of periodic tasks, especially task sets
using co-prime periods. Hence, it is only expected to be
used as an offline test. However, there are a number of
applications where the schedulability analysis presented is
manageable and useful, such as the automotive, satellite and
other aerospace industries, where the typical task frequency
is around 10-100Hz.

The inclusion of the sporadic tasks also enables a new
faster schedulability method by manipulating the degree of
pessimism introduced. In essence, the lower priority tasks

are considered to be sporadic tasks released at a set of asyn-
chronous critical instants (worst possible instants). This
method strongly reduces the hyperperiod under analysis.

The incorporation of major model extensions found for
synchronous systems, such as blocking factors, context
switch overhead, non-preemptive schedulers, dynamic pri-
ority schedulers, arbitrary deadlines, etc, is very appealing
as future work. The introduction of release jitter is also of
great interest. Furthermore, a study is being performed to
allow the determination of Li(t) without having to analyze
the whole interval [0,t[. This enables an efficient distribu-
tion of the overall method through several independent ma-
chines, each one analysing a small portion of the hyperpe-
riod with a very small overhead.

Acknowledgments

This work was motivated by our research activities under
the scope of Projects DARIO (Distributed Agency for Reli-
able Input/Output), AIR (ARINC 653 Interface in RTEMS)
[16] and RTEMS CENTRE [19]. The authors are in debt
to researchers and technical officers at ESTEC (ESA - Eu-
ropean Space Agency, Noordwijk) for some informal dis-
cussions on task timing characteristics of typical spacecraft
on-board software applications.

References

[1] N. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times. Technical re-
port, Department of Computer Science, University of York,
1991.

[2] N. Audsley. On Priority Assignment in Fixed Priority
Scheduling. Information Processing Letters, 79(1):39–44,
2001.

[3] N. Audsley, K. Tindell, and A. Burns. The end of the line for
static cyclic scheduling? In Fifth Euromicro Workshop on
Real-time Systems, pages 36–41, Oulu, Finland, 1993. IEEE
Computer Society Press.

[4] I. Bate and A. Burns. Schedulability analysis of fixed prior-
ity real-time systems with offsets. In Proc. of 9th Euromicro
Workshop on Real-Time Systems, pages 153–160, Toledo,
Spain, June 1997. IEEE Computer Society.

[5] G. Bernat. Response time analysis of asynchronous real-
time systems. Real-Time Syst., 25(2-3):131–156, 2003.

[6] R. Devillers and J. Goossens. General response time com-
putation for the deadline driven scheduling of periodic tasks.
Fundamenta Informaticae, 40(2–3):199–219, November-
December 1999.

[7] J. Goossens. Scheduling of Hard Real-Time Periodic Sys-
tems with Various Kinds of Deadline and Offset Constrains.
PhD thesis, Faculté des Sciences, December 1999.

[8] J. Goossens and R. Devillers. Feasibility intervals for the
deadline driven scheduler with arbitrary deadlines. In I. C.

Society, editor, The 6th International Conference on Real-
Time Computing Systems and Applications (RTCSA’99),
pages 54–61, December 1999.

[9] M. Grenier, J. Goossens, and N. Navet. Near-optimal
fixed priority preemptive scheduling of offset free systems.
In Proceedings of the 14th International Conference on
Network and Systems (RTNS’2006), Poitiers, France, May
2006.

[10] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In I. C. S. Press,
editor, Proceeedings of the 12th IEEE Real-Time Systems
Symposium, pages 129–139, December 1991.

[11] M. Joseph and P. Pandaya. Finding response times in a real-
time system. The Computer Journal, 29:390–395, 1986.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings IEEE Real-Time Systems
Symposium, pages 166–171, Santa Monica, USA, 1989.

[13] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[14] J. Mäki-Turja and M. Nolin. Fast and tight response-times
for tasks with offsets. In 17th EUROMICRO Conference on
Real-Time Systems, page 10, Palma de Mallorca Spain, July
2005. IEEE.

[15] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time
periodic tasks with offsets. Real-Time Systems, 30(1-2):105–
128, 2005.

[16] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Wind-
sor. ARINC 653 interface in RTEMS. In Proceedings of
the DASIA 2007 ”DAta Systems In Aerospace” Conference,
Naples, Italy, June 2007. EUROSPACE.

[17] K. Shin and X. Chui. Computing time delay and its effects
on real-time control systems. IEEE Transactions on Control
Systems Technology, 3(2):218–224, June 1995.

[18] H. Silva, A. Constantino, D. Freitas, M. Coutinho,
S. Faustino, and M. Zulianello. RTEMS CENTRE - sup-
port and maintenance CENTRE to RTEMS operating sys-
tem. In Proceedings of the DASIA 2008 ”DAta Systems
In Aerospace” Conference, Palma de Majorca, Spain, May
2008. EUROSPACE.

[19] H. Silva, A. Constantino, M. Mota, D. Freitas, and M. Zu-
lianello. RTEMS CENTRE - support and maintenance to
RTEMS operating system. In Proceedings of the DASIA
2007 ”DAta Systems In Aerospace” Conference, Naples,
Italy, June 2007. EUROSPACE.

[20] K. Tindell. Adding time-offsets to schedulability analysis.
Technical report, University of York, 1994.

